I am a researcher in mathematical physics, working in the group “dynamique quantique et nonlinéaire” at the ICB.
Research interests
My main research interest is the mathematical description of quantum mechanics, and its connections to functional analysis, partial differential equations, geometry and topology.
I am a co-organiser of the joint working seminar of the ICB and the mathematics institutes of Dijon (IMB) and Besançon (LMB).
Short Bio
After obtaining the diploma in mathematics at the university of Tübingen in 2010, I wrote my PhD thesis under the supervision Stefan Teufel.
From 2014 to 2016 I worked as a postdoc with Mathieu Lewin at the universities of Cergy-Pontoise and Paris-Dauphine.
In 2016 I obtained a position for interdisciplinary research in mathematical physics at the CNRS.
Preprints
- J.L.: A remark on the attainable set of the Schrödinger equation; arxiv:1904.00591, 2019.
Journal Articles
- J.L.: The Renormalised Bogoliubov-Fröhlich Hamiltonian. Journal of Mathematical physics arxiv:1909.02430, 2019.
- V. Dorier, J.L., S. Guérin, and H.R. Jauslin: Canonical quantization for quantum plasmonics with finite nanostructures. Physical Review A 100, 2019; arXiv:1810.08014
- J.L.: A nonrelativistic quantum field theory with point interactions in three dimensions. Annales Henri Poincaré 20(11), 2019; arxiv:1804.08295 .
- J.L., and J. Schmidt: On Nelson-type Hamiltonians and abstract boundary conditions. Communications in Mathematical Physics 367(2), 2019; arxiv:1803.00872
- S. Haag, J.L., and S.Teufel: Quantum waveguides with magnetic fields. Reviews in Mathematical Physics 31(8), 2019; arXiv:1710.0151
- S. Haag, and J. L.: The adiabatic limit of the connection Laplacian. The Journal of Geometric Analysis 29(3), 2019; arXiv:1705.09801
- J. L., J. Schmidt, S. Teufel, and R. Tumulka, Particle Creation at a Point Source by Means of Interior-Boundary Conditions. Mathematical Physics Analysis and Geometry 21(2), 2018; arXiv:1703.04476
- S. Fournais, J.L., M. Lewin, and T. Østergaard Sørensen: Coulomb potentials and Taylor expansions in Time-Dependent Density Functional Theory. Rhysical Review A 93(6), 2016; arxiv:1603.02219
- J.L., and M. Lewin: Semi-classical Dirac vacuum polarisation in a scalar field. Annales Henri Poincaré 17(8): 1937-1954, 2016; arxiv:1506.00895
- J.L., and M. Lewin: A many-body RAGE theorem. Communications in Mathematical Physics 340(3): 1171-1186, 2015; arXiv:1503.00496
- J.L.: Convergence of nodal sets in the adiabatic limit. Annals of Global Analysis and Geometry 47(2): 147-166, 2015; arXiv:1405.1903
- S. Haag, J.L., and S. Teufel: Generalised Quantum Waveguides. Annales Henri Poincaré 16(11): 2535-2568, 2015; arXiv:1402.1067
- J.L., and S. Teufel: The adiabatic limit of Schrödinger operators on fibre bundles. Mathematische Annalen 367: 1647, 2017; arXiv:1402.0382
Conference Proceedings
- J.L., A polaron model with point interactions in three dimensions. To appear in: G. Dell’Antonio, A. Michelangeli (Eds.), Mathematical Challenges in Zero Range Physics, Springer, 2018. PDF
- J.L., Can quantum dynamics be described by the density alone? Oberwolfach Reports 13(3): 2496, 2016. PDF
- J.L., S. Teufel: The adiabatic limit of the Laplacian on thin fibre bundles. In: D. Grieser, S. Teufel, A. Vasy (Eds.): Microlocal Methods in Mathematical Physics and Global Analysis, Birkhäuser, 2013. PDF
- J.L., J. Wachsmuth, and S. Teufel: Effective Hamiltonians for thin Dirichlet tubes with varying cross-section. In: P. Exner (Ed.): Mathematical Results in Quantum Physics: Proceedings of the QMath11 Conference, World Scientific, 2011; arXiv:1011.3645
PhD Thesis: The adiabatic limit of Schrödinger operators on fibre bundles, Universität Tübingen, 2014
Diploma Thesis: The semi-classical Egorov theorem on Riemannian manifolds, Universität Tübingen, 2009