Sheet 2

Exercise 1.1

Let f and g in $\mathscr{S}(\mathbb{R}^d)$ and P be a polynomial function. Show the following properties

- $fg \in \mathscr{S}(\mathbb{R}^d)$,
- $Pf \in \mathscr{S}(\mathbb{R}^d)$.

Exercise 1.2 (Transport equation)

Let $u_0 \in \mathscr{S}(\mathbb{R}^d)$ and $v \in \mathbb{R}^d$.

- 1. Let us set for any $(t,\xi) \in \mathbb{R} \times \mathbb{R}^d$, $\Phi(t,\xi) := e^{itv \cdot \xi} \widehat{u}_0(\xi)$.
 - (a) Show that for any $t \in \mathbb{R}$, $\Phi(t, \cdot) \in \mathscr{S}(\mathbb{R}^d)$.
 - (b) Show that the function $u:(t,x)\in\mathbb{R}\times\mathbb{R}^d\mapsto u(t,x):=\mathcal{F}^{-1}(\Phi(t,\cdot))(x)$ satisfies

$$\begin{cases} \partial_t u - v \cdot \nabla u = 0 & \text{in } \mathbb{R} \times \mathbb{R}^d, \\ u(0, \cdot) = u_0 & \text{in } \mathbb{R}^d. \end{cases}$$

- 2. Using the Fourier inversion formula, find $\varphi : \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^d$ such that for any $(t,x) \in \mathbb{R} \times \mathbb{R}^d$, we have $u(t,x) = u_0(\varphi(t,x))$.
- 3. Let $p \in [1, +\infty]$. Show that

$$\forall t \in \mathbb{R}, \quad ||u(t, \cdot)||_{L^p} = ||u_0||_{L^p}.$$

Exercise 1.3 (Generalized Hölder estimate)

Let p, q and r in $[1, \infty]$ such that

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{r}.$$

Let $f \in L^p(\mathbb{R}^d)$ and $g \in L^q(\mathbb{R}^d)$. The goal of this exercise is to show that

$$||fg||_{L^r} \le ||f||_{L^p} ||g||_{L^q}. \tag{1}$$

- 1. Show (1) for $r = \infty$.
- 2. Assume that $r \neq \infty$. Deduce (1) from the standard Hölder estimate (which correspond to the case r=1).

Hint: use that r/p + r/q = 1.

Exercise 1.4 (Young estimate)

Let p, q and r in $[1, \infty]$ such that

$$\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}.$$

Let $f \in L^p(\mathbb{R}^d)$ and $g \in L^q(\mathbb{R}^d)$. The goal of this exercise is to show that $f \star g \in L^p(\mathbb{R}^d)$, with

$$||f \star g||_{L^r} \le ||f||_{L^p} ||g||_{L^q}. \tag{2}$$

- 1. Assume that $r = \infty$. Show that (2) holds.
- 2. Assume that p = q = 1. Show that (2) holds.
- 3. Assume that p = 1.
 - (a) Show that

$$\left(\int_{\mathbb{R}^d}|f(x-y)||g(y)|dy\right)^q\leq \left(|f|\star|g|^q\right)(x)\|f\|_{L^1}^{q-1}.$$

Hint: Remark that $|f(x-y)||g(y)| = |f(x-y)|^{1-\frac{1}{q}}|f(x-y)|^{\frac{1}{q}}|g(y)|$.

(b) Deduce from 2. that

$$||f \star g||_{L^q} \le ||f||_{L^1} ||g||_{L^q}.$$

- 4. Assume that p, q and r belong to $]1, \infty[$.
 - (a) Let p_1 , p_2 and p_3 in $[1, \infty]$ such that $\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} = 1$ and $u \in L^{p_1}(\mathbb{R}^d)$, $v \in L^{p_2}(\mathbb{R}^d)$ and $w \in L^{p_3}(\mathbb{R}^d)$. Show that

$$||uvw||_{L^1} \le ||u||_{L^{p_1}} ||v||_{L^{p_2}} ||w||_{L^{p_3}}.$$

- (b) Show that $|f(x-y)||g(y)| = |f(x-y)|^{p/r}|g(y)|^{q/r}|f(x-y)|^{1-p/r}|g(y)|^{1-q/r}$.
- (c) Conclude.

Exercise 1.5 (Minkowski estimate)

Let $p \in [1, \infty]$ and $g, f \in L^p(\mathbb{R}^d)$. The goal is to show that

$$||f + g||_{L^p} \le ||f||_{L^p} + ||g||_{L^p}. \tag{3}$$

- 1. Show (3) for $p = \infty$ and p = 1.
- 2. Assume that $p \in]1, \infty[$.
 - (a) Show that

$$|f(x) + g(x)|^p \le |f(x)||f(x) + g(x)|^{p-1} + |g(x)||f(x) + g(x)|^{p-1}.$$

(b) Show that

$$\int_{\mathbb{R}^d} |f(x)| |f(x) + g(x)|^{p-1} dx \le ||f||_{L^p} ||f + g||_{L^p}^{\frac{p-1}{p}}.$$

(c) Deduce (3).

Exercise 1.6 (Chebyshev estimate)

Let $p \in [1, \infty)$. Show that

$$\forall \lambda > 0, \quad \int_{\mathbb{R}^d} \mathbf{1}_{\{|f| \ge \lambda\}} dx \le \frac{1}{\lambda^p} ||f||_{L^p}^p.$$

Homework (hand in on 12.02.2025).

Exercise 1.7 (Interpolation estimate)

Let p and q in $[1, \infty]$ such that p < q. Show that if $f \in L^p(\mathbb{R}^d) \cap L^q(\mathbb{R}^d)$, then $f \in L^r(\mathbb{R}^d)$ for every $r \in [p, q]$.

Hint: Use that if $r \in [p,q]$, then there exists $\theta \in [0,1]$ such that $1/r = \theta/p + (1-\theta)/q$ and show that $||f||_{L^r} \le ||f||_{L^p}^{\theta-1}||f||_{L^q}^{1-\theta}$.

Exercise 1.8

Let f, g and h in $\mathscr{S}(\mathbb{R}^d)$. Show the following properties

- $f \star g = g \star f$,
- $f \star (g+h) = f \star g + f \star h$,
- $(f \star g) \star h = f \star (g \star h)$.

Exercise 1.9 (Wave equation and finite propagation speed)

Let us consider a real valued function $u:[0,+\infty[\times\mathbb{R}^d\to\mathbb{R}]$. solution of the wave equation.

$$\partial_t^2 u - \Delta u = 0$$
 in $]0, +\infty[\times \mathbb{R}^d]$.

Assume that

- (H1) $u \in \mathscr{C}_b^2([0, +\infty[\times \mathbb{R}^d);$
- (**H2**) there exists R > 0, such that $u(0,\cdot)$ and $\partial_t u(0,\cdot)$ vanish on $B(0,R) := \{x \in \mathbb{R}^d \mid |x| \leq R\}.$

The goal of this exercise is to show that

$$u = 0$$
 in $K(R) := \{(t, x) \in [0, +\infty[\times \mathbb{R}^d \mid |x| \le R - t]\}.$

Part 1

For any $\varepsilon \geq 0$ and $(t, x) \in [0, +\infty[\times \mathbb{R}^d, \text{ we set}]$

$$\varphi_{\varepsilon}(t,x) := R - (t + \sqrt{|x|^2 + \varepsilon}).$$

$$E_s^{\varepsilon}(t) := \frac{1}{2} \int_{\mathbb{R}^d} e^{2s\varphi_{\varepsilon}(t,x)} (|\partial_t u(t,x)|^2 + |\nabla u(t,x)|^2) dx,$$

is well-defined.

- 2. Assume that $\varepsilon > 0$.
 - (a) Show that

$$\frac{d}{dt}E_s^{\varepsilon} = -s \int_{\mathbb{R}^d} e^{2s\varphi_{\varepsilon}} (|\partial_t u|^2 + |\nabla u|^2) dx - 2s \int_{\mathbb{R}^d} e^{2s\varphi_{\varepsilon}} (\nabla \varphi_{\varepsilon} \cdot \nabla u) \partial_t u dx.$$

(b) Show that $\|\nabla \varphi_{\varepsilon}(t,\cdot)\|_{L^{\infty}} \leq 1$.

(*Hint*: recall that
$$\|\nabla \varphi_{\varepsilon}(t,\cdot)\|_{L^{\infty}} = \sup_{x \in \mathbb{R}^d} \left(\sum_{j=1}^d |\partial_j \varphi_{\varepsilon}(t,x)|^2 \right)^{1/2}$$
).

(c) Show that

$$-2\int_{\mathbb{R}^d}e^{2s\varphi_{\varepsilon}}(\nabla\varphi_{\varepsilon}\cdot\nabla u)\partial_t udx\leq \int_{\mathbb{R}^d}e^{2s\varphi_{\varepsilon}}(|\partial_t u|^2+|\nabla u|^2)dx.$$

(*Hint*: use the estimate $2ab \le a^2 + b^2$)

(d) Deduce that

$$\forall t \in [0, +\infty[, E_s^{\varepsilon}(t) \le E_s^{\varepsilon}(0)].$$

3. Deduce from the dominated convergence theorem that

$$\forall t \in [0, +\infty[, E_s^0(t) \le E_s^0(0).$$

4. Deduce from 3. that

$$\forall t \in [0, +\infty[, \lim_{s \to +\infty} E_s^0(t) = 0.$$

(*Hint*: use that $\varphi_0(0,x) < 0$ when $x \in B(0,R)$ and (**H2**)).

5. Conclude that

$$\forall (t, x) \in K(R), \quad u(t, x) = 0.$$