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Exercise 1.1 (The Shrödinger equation and uniqueness)

For any t ∈ R \ {0} and x ∈ Rd, we set

kt(x) :=
1

(4πt)
d
2

e
i|x|2
4t .

1. Let u0 ∈ S ′(Rd). Show that kt ⋆ u0 ∈ S ′(Rd)) and that t 7→ kt ⋆ u0
is continuous C(R;S ′(Rd)). (Hint : show that for any f ∈ S (Rd),
t ∈ R 7→ kt⋆f belongs to C(R;S ′(Rd)) and extends this result by duality.)

In the following, we set u := k ⋆ u0.

2. Show that u satis�es the Schrödinger equation in S ′(R× Rd), that is

(i∂t +∆)u = 0 in S ′(R× Rd).

3. Show that, for any φ ∈ S (R× Rd) and t ∈ R \ {0}∫ t

0

⟨u, (i∂t+∆)φ(s, ·)⟩S ′(Rd),S (Rd)ds

= ⟨u0, iφ(0, ·)⟩S ′(Rd),S (Rd) − ⟨u(t), iφ(t, ·)⟩S ′(Rd),S (Rd) (1)

4. Let ψ ∈ S (Rd), T > 0 and χT ∈ C∞
c (R) such that χT (t) = 1 for any

t ∈ [0, T ]. We de�ne the function Φ by setting for any (t, ξ) ∈ R × Rd,

ΦT (t, ξ) := ei(T−t)|ξ|2 ψ̂(ξ)χT (t).

(a) Show that φT : (t, x) ∈ R× Rd 7→ F−1(ΦT (t, ξ)) belongs to S (R×
Rd) and satis�es

i∂tφ
T +∆φT = 0 in [0, T ]× Rd.

(b) Assume that u0 = 0. Deduce from (1) that u(T ) = 0 in S ′(Rd).

5. Deduce that for any u0 ∈ S ′(Rd), the distribution k ⋆ u0 is the unique
solution of the Schrödinger equation in S ′(R×Rd) satisfying (1) for any
φ ∈ S (R× Rd) and t ∈ R \ {0}.

Exercise 1.2 (Green's function for the Laplacian)

1. Let g : R → R be the function given by g(x) = 1
2e

−|x| for x ∈ R. Show that
g (more precisely the associated distribution, φg) is the unique solution in
S ′(R) to the equation

(1−∆)φ = δ0 ,

by
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(a) the Fourier transform;

(b) using the distributional derivative.

2. Prove that for f ∈ S (R) the unique solution to the equation

(1−∆)u = f

is

u(x) =

∫
g(x− y)f(y)dy.

Remark 1.2.1. The function g is called the fundamental solution or Green's
function for the equation.

Exercise 1.3 (Example of distributions belonging in Hs(Rd)

1. Let a ∈ Rd. Show that δa ∈ H−s(Rd) for any s > d/2.

2. Let a, b ∈ R such that a < b. Show that 1[a,b] ∈ Hs(R) for any s < 1
2 .

3. Why 1[a,b] /∈ Hs(R) for s > 1
2 ?

Homework (hand in on 12.03.2025).

Exercise 1.4 (Dispersive estimate for Schrödinger equation)

Let u0 ∈ Lp(Rd) for p ∈ [1, 2] and u be the solution of the Schrödinger equation
in the sens of Exercise 1.1, Item 5. with initial data u0.

1. Show that, if u0 ∈ L1(Rd), then

∀t ∈ R \ {0}, ∥u(t)∥L∞ ≤ 1

(4πt)
d
2

∥u0∥L1

2. Show that, if u0 ∈ L2(Rd), then

∀t ∈ R \ {0}, ∥u(t)∥L2 = ∥u0∥L2 .

(Hint: use that F (kt) = e−it|·|2 in S ′(Rd).)

3. (Bonus) Let p′ a real number such that 1
p + 1

p′ = 1. Show that,

∀t ∈ R \ {0}, ∥u(t)∥Lp′ ≤
1

(4π|t|)
d
2 (

1
p−

1
2 )
∥u0∥Lp .

(Hint : use the Riesz-Thorin Theorem.)

Remark 1.4.1. The estimate shown in the last question is called a dispersive
estimate. These estimates are the main tools to derive the Strichartz estimate
for the Schrödinger equation. These estimates are used to solve a large class of
nonlinear Schrödinger equations.
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Exercise 1.5 (Nonlinear heat equation)

Let u0 ∈ Ld(Rd).

Part 1: Functional setting. We de�ne the set

K :=
{
u ∈ C ((0,+∞);L2d(Rd))

∣∣∣∥u∥K := sup
s>0

{s 1
4 ∥u(s, ·)∥L2d} <∞

}
.

1. Show that K is a Banach space.

Part 2: Nonlinear estimates. For any u, v and w in K, we de�ne

∀t ≥ 0, T (u, v, w)(t) :=

∫ t

0

e(t−s)∆ (u(s, ·)v(s, ·)w(s, ·)) ds.

1. In this question we will show that for any u, v and w in K, we have
T (u, v, w) ∈ K and that there is a positive constant C such that

∥T (u, v, w)∥K ≤ C1∥u∥K∥v∥K∥w∥K. (2)

Let u, v and w in K.

(a) Show that

∀t ≥ 0, ∥T (u, v, w)(t)∥L2d ≤
(∫ t

0

1

(t− s)
1
2

ds

)
∥u(s, ·)v(s, ·)w(s, ·)∥L2d/3 .

(b) Deduce that

∀t ≥ 0, ∥T (u, v, w)(t)∥L2d ≤
(∫ t

0

1

(t− s)
1
2 s

3
4

ds

)
∥u∥K∥v∥K∥w∥K.

(c) Deduce that (2) holds.

(d) Show that T (u, v, w) ∈ K.

Part 3: Duhamel formula. Let u0 ∈ Ld(Rd). For any t ≥ 0 and u ∈ K, we
de�ne

Φ(u)(t) := et∆u0 + T (u, u, u)(t).

1. Show that there exists a constant C2 such that for any u ∈ K, we have

∥Φ(u)∥K ≤ C2

(
∥u0∥Ld + ∥u∥3K

)
(3)

and that Φ ∈ K.

2. Show that there exists a constant C3 such that for any u and v in K, we
have

∥Φ(u)− Φ(v)∥K ≤ C3

(
∥u∥2K + ∥v∥2K + ∥u∥K∥v∥K

)
∥u− v∥K. (4)

(Hint : use Estimate (2))
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Part 4: Fixed point argument Let ε > 0. Assume that

∥u0∥Ld < ε. (5)

and we introduce the set

B(2ε) :=
{
u ∈ K

∣∣∥u∥K < 2ε
}
.

1. Show that B(2ε) is a complete metric space for the distance induce be K
norm, namely ∥ · ∥K.

2. Show that there exists a constant C4 which does not depends of ε, such
that for any u and v in B(2ε), we have

∥Φ(u)∥K ≤ C4(1 + ε2)ε

and
∥Φ(u)− Φ(v)∥K ≤ C4ε

2∥u− v∥K.

3. Choose ε > 0 small enough such that Φ is a strict contraction of B(2ε).

4. Deduce that Φ has a unique �xed point u. (Hint : use the Banach �xed
point theorem.)

Remark 1.5.1. The �xed points of Φ are called the mild solutions of the equa-
tion {

∂tu−∆u+ u3 = 0, in ]0,+∞[×Rd,

u(0, ·) = u0, in Rd,
(6)

for small enough initial data u0. We can obtain the existence of mild solu-
tions for u0 large, but only for small times. The same method (so called "Kato
method") can be used to show the existence of solutions to the Navier-Stokes
equation.


