Exam preparation

You will have **180 minutes** in total to complete the examination. The following rules will apply:

- Switch off your mobile phone and put it away. Do not leave it on the table.
- You may use the lecture notes of the course in paper form that may include your own annotations. No other material is admitted.
- Do not write with a pencil, nor use the colours red or green.
- All answers and solutions must provide sufficiently detailed arguments, except for multiple choice questions.
- Only one solution to each problem will be accepted. Please cross out everything that is not supposed to count.

Problem 1.

Mark all correct statements.

a) Let A, D(A) be the densely defined operator

$$Af:=-\frac{\mathrm{d}^2f}{\mathrm{d}x^2}-\mathrm{i}\frac{\mathrm{d}f}{\mathrm{d}x}$$

with domain $D(A) = H^2(\mathbb{R}) \subset L^2(\mathbb{R}^d) =: \mathcal{H}$. Then A is

- \Box dissipative;
- \Box self-adjoint;
- b) The solution operator to the heat equation on \mathbb{R}^d , $T(t) := e^{t\Delta}$, $t \ge 0$,
 - \square is bounded on $L^2(\mathbb{R}^d)$;
 - \square has spectrum $\sigma(T(t)) = \{z \in \mathbb{C} : |z| < 1\};$
 - \Box is dissipative.

[5 Points]

Problem 2. Let $m > 0, f \in \mathscr{S}(\mathbb{R})$ and set

$$u(t,x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \cos(t\sqrt{k^2 + m^2}) \mathrm{e}^{-\mathrm{i}kx} \hat{f}(k) \mathrm{d}k.$$

- a) Show that for all $t \in \mathbb{R}$, $(t, x) \mapsto u(t, x) \in C^2(\mathbb{R}^2)$. [2 Points]
- b) Show that u solves the Klein–Gordon equation

$$\partial_t^2 u(t,x) = (\partial_x^2 - m^2)u(t,x)$$

with inital data

$$u(0,x) = f(x), \qquad \partial_t u(0,x) = 0.$$

c) Show that for all $t \in \mathbb{R}$, $\int |u(t,x)|^2 dx \le ||f||^2_{L^2(\mathbb{R})}$. [1 Points]

Problem 3. Define for $f \in \mathscr{S}(\mathbb{R})$

$$\varphi(f) = \frac{\mathrm{d}}{\mathrm{d}x} \Big|_{x=0} x f(x).$$

a) Show that φ defines a tempered distribution. [2 Points] b) Calculate the Fourier transform of φ [2 Points]

c) Show that $\varphi \in H^{-1}(\mathbb{R})$. [1 Points]

Problem 4.

Let $a \in C^1(\mathbb{R}, \mathbb{R})$ satisfy $a(x) \ge 1$ for all $x \in \mathbb{R}$ and $a, \frac{\mathrm{d}a}{\mathrm{d}x} \in L^\infty(\mathbb{R})$. Prove that for $u_0 \in H^2(\mathbb{R})$ the Cauchy problem

$$\begin{cases} \partial_t u(t,x) = \partial_x a(x) \partial_x u(t,x) + \partial_x u(t,x) \\ u(0) = u_0 \end{cases}$$

admits a unique solution

$$u \in C^1([0,\infty), L^2(\mathbb{R})) \cap C^0([0,\infty), H^2(\mathbb{R})).$$

[5 Points]

[2 Points]