Sheet 6

Exercise 1.1 (Weak and strong convergence)

Let \mathcal{H} be a Hilbert space and $(f_n)_{n\in\mathbb{N}}$ a sequence of \mathcal{H} that converges weakly to f in \mathcal{H} and such that $(\|f_n\|_{\mathcal{H}})_{n\in\mathbb{N}}$ converges to $\|f\|_{\mathcal{H}}$. Show that $(f_n)_{n\in\mathbb{N}}$ converges strongly to f in \mathcal{H} .

Exercise 1.2 (Density in $H^s(\mathbb{R}^d)$)

Let $s \in \mathbb{R}$. Show that $\mathscr{S}(\mathbb{R}^d)$ is dense in $H^s(\mathbb{R}^d)$.

Exercise 1.3 (Local compact embedding)

Let $t < s, \varphi \in \mathscr{S}(\mathbb{R}^d)$. The goal of this exercise is to show that the multiplication by φ is a compact operator from $H^s(\mathbb{R}^d)$ to $H^t(\mathbb{R}^d)$.

Let $(u_n)_{n\in\mathbb{N}}$ be e sequence of $H^s(\mathbb{R}^d)$ such that $\sup_{n\in\mathbb{N}}\{\|u_n\|_{H^s}\}\leq 1$.

1. Show that, up to extraction of a subsequence, $(u_n)_{n\in\mathbb{N}}$ converging weakly in $H^s(\mathbb{R}^d)$ to an element u.

Let us set $v_n := u_n - u$.

2. Show that there exists a constant C_1 such that

$$\sup_{n\in\mathbb{N}}\{\|\varphi v_n\|_{H^s}\}\leq C_1.$$

3. Show that for any positive real number R, we have

$$\|\varphi v_n\|_{H^t} \le \int_{B(0,R)} (1+|\xi|^2)^t |\mathscr{F}(\varphi v_n)|^2 d\xi + \frac{C_1^2}{(1+R^2)^{s-t}}.$$

Let us consider $\varepsilon > 0$.

4. Show that there exists a positive real number R such that

$$\frac{C_1^2}{(1+R^2)^{s-t}} \le \varepsilon.$$

5. For all $\xi \in \mathbb{R}^d$, we set $\psi_{\xi} := \mathscr{F}^{-1}((1+|\cdot|^2)^{-s}\mathscr{F}(\varphi)(\xi-\cdot))$. Show that, for any $\xi \in \mathbb{R}^d$, ψ_{ξ} belongs to $\mathscr{S}(\mathbb{R}^d)$ and that

$$\forall \xi \in \mathbb{R}^d, \quad \mathscr{F}(\varphi v_n)(\xi) = \langle \psi_{\xi}, v_n \rangle.$$

- 6. Deduce that for any $\xi \in \mathbb{R}^d$, we have $\lim_{n \to +\infty} \mathscr{F}(\varphi v_n)(\xi) = 0$.
- 7. Assume that there exists a positive real number M>0 such that

$$\sup_{\xi \in B(0,R), n \in \mathbb{N}} \{ |\mathscr{F}(\varphi v_n)| \} \le M. \tag{1}$$

- 8. Conclude.
 We will now show (1).
- 9. Show that there exists a positive real number C_2 such that

$$\forall \mu \in \mathbb{R}^d, \quad |\widehat{\varphi}(\mu)| \le \frac{C_2}{(1+|\mu|^2)^{\frac{d}{2}+|s|-1}}.$$

10. Show that for any $\xi \in B(0, R)$,

$$\int_{\mathbb{R}^d} (1+|\eta|^2)^{-s} |\widehat{\varphi}(\xi-\eta)|^2 d\eta
\leq C_1 \int_{|\eta| \leq 2R} (1+|\eta|^2)^{|s|} ds + C_2 \int_{|\eta| \geq 2R} \frac{(1+|\eta|^2)^{|s|}}{(1+|\xi-\eta|^2)^{\frac{d}{2}+|s|+1}} d\eta.$$

11. Deduce that there exists a positive real number C_3 such that

$$\forall \xi \in B(0,R), \ \int_{\mathbb{R}^d} (1+|\eta|^2)^{-s} |\widehat{\varphi}(\xi-\eta)|^2 d\eta \le C_3 (1+R^2)^{|s|+\frac{d}{2}}$$

(*Hint*: to bound $\int_{|\eta| \geq 2R} (1 + |\eta|^2)^{-s} (1 + |\xi - \eta|^2)^{-(\frac{d}{2} + |s| + 1)} d\eta$, use that if $|\xi| \leq R$ and $|\eta| \geq 2R$, we have $|\xi - \eta| \geq \frac{|\eta|}{2}$.)

12. Deduce that (1) holds.

Exercise 1.4 (Norm of the heat propagator)

Let t > 0. Show that $||e^{t\Delta}||_{\mathcal{B}(L^2(\mathbb{R}^d))} = 1$.