Sheet 7

Exercise 1.1 (Spectrum of bounded operator)

Let \mathcal{H} be a Hilbert space and $A \in \mathcal{B}(\mathcal{H})$.

- 1. Show that, if $||A||_{\mathcal{B}(H)} < 1$ is bounded, then 1 + A is invertible.
- 2. Show that $\sigma(A)$ is compact.

Homework (hand in on 02.04.2025).

Exercise 1.2 (The Lax-Milgram Theorem)

Let \mathcal{H} be a Hilbert space and

$$\alpha: \mathcal{H} \times \mathcal{H} \to \mathbb{C}$$

a sesquilinear form. Asssume that

• α is bounded: there exists C > 0 so that for all $f, g \in \mathcal{H}$

$$|\alpha(f,g)| \le C||f|||g||;$$

• α is coercive: there exists a > 0 so that for all $f \in \mathcal{H}$

$$\alpha(f, f) \ge a||f||^2.$$

Prove that:

- 1. There exists $A \in B(\mathcal{H})$ so that $\alpha(f,g) = \langle Af,g \rangle$;
- 2. A is bijective with bounded inverse satisfying $||A^{-1}|| \le a^{-1}$;
- 3. $g = A^{-1}f$ is the unique minimiser of

$$g \mapsto \alpha(g,g) - 2\operatorname{Re}\langle f, g \rangle.$$

Exercise 1.3

Let $V \in L^{\infty}(\mathbb{R}^d, \mathbb{R})$ be non-negative.

1. Prove that for every $f \in L^2(\mathbb{R}^d)$ and $\lambda > 0$ there exists a unique $u \in H^1(\mathbb{R}^d)$ such that

$$\forall \varphi \in H^1(\mathbb{R}^d) : \langle \nabla u, \nabla \varphi \rangle + \langle (V + \lambda)u, \varphi \rangle = \langle f, \varphi \rangle,$$

that is, there is a unique weak solution to the equation

$$-\Delta u + Vu + \lambda u = f.$$

2. Prove that the weak solution $u \in H^1(\mathbb{R}^d)$ obtained in part 1) is an element of $H^2(\mathbb{R}^d)$.