CO2M: Design, Optimization, and Mechanics Design

Synthesis and characterization of nanoparticles and nanostructures AFM microscopy, single-molecule spectroscopy, biosensors, protein physics, biomedical applications

Designing and optimizing mechanical systems

Le département « Conception, Optimisation et Modélisation en Mécanique » (CO2M) développe des nouvelles connaissances, méthodes et outils destinés aux changements de paradigmes dans la conception, le dimensionnement et la fabrication de systèmes mécaniques, mécatroniques, voire thermomécaniques complexes.

Les sujets de recherche développés au sein du département concernent  la conception avancée de systèmes mécaniques, la modélisation et l’optimisation numérique en mécanique, les transferts de chaleur et couplages thermo-physiques, l‘Information quantique pour l’intégration à l’échelle nanométrique des protocoles de communication quantiques et l’optimisation des procédés de fabrication.

Le travail des chercheurs du département CO2M s’organise autour d’un nouvel axe de recherche transversal, en fort développement à l’échelle internationale, et dédié à la « Conception, la modélisation et l’optimisation pour la fabrication additive 3D et 4D ». Cet axe transversal traite des méthodes et outils pour une conception orientée fabrication additive 3D, de l’impression 4D à base de matériaux intelligents et de la vibro-acoustique pour la ca- ractérisation de pièces obtenues par fabrication additive.

Frédéric Demoly DIRECTOR
Frederic.Demoly@utbm.fr
Phone +33 3 84 58 39 55
Sébastien ROTH DEPUTY DIRECTOR
Sebastien.Roth@utbm.fr
Phone +33 3 84 58 39 01
Annual Report 2024 Download the department’s activity report in PDF format
Members Find the complete directory of the entire department
Publications Check out the department's latest scientific publications

Research topics

Advanced design of mechanical systems

This research theme, oriented towards Industry 4.0, focuses on the agile and proactive design of mechanical and mechatronic systems. It aims to enhance productivity by automating design activities through optimized management of technical information and knowledge.

By using artificial intelligence techniques such as inference engines and decision-support systems based on ontologies or graph theory, this approach frees up time for innovative engineering activities. The goal is to transform design offices into more creative and efficient engineering centers.

The work aligns with Industry 4.0 challenges, including Concurrent Engineering, PLM, Design for X, Design Automation, and Lean Engineering.

Numerical modeling and optimization in mechanics

This research theme focuses on multiphysics modeling and numerical optimization of complex mechanical systems subjected to various constraints, including phenomena such as nonlinear mechanics and contact problems. Applications include biological tissues, abradable materials, welds, and high-speed forming processes.

Numerical optimization aims to accelerate simulations of complex phenomena. Classical algorithms are often inefficient for finding the global optimum, while stochastic algorithms can be costly. Research in topology optimization focuses on creating innovative materials and metamaterials manufactured through 3D printing.

Heat transfer and thermo-physical couplings

The work is divided into three areas:

  1. The study of conduction phenomena (linear/nonlinear, steady/unsteady) and convection (forced, natural, laminar, turbulent), using inverse approaches to determine unknown thermal-physical conditions and properties.
  2. Thermal couplings with other phenomena (mass transfer, mechanics, magnetism, electrochemistry), applied to complex multiphysics systems.

  3. Applications in thermal and energy systems (solar thermal, air conditioning, fuel cells, hydrogen production, heat engines, phase-change materials, nanofluids).

Computer codes have been developed to simulate the thermal and dynamic behavior of both simple and complex systems.

Optimization of manufacturing processes

This work aims to design optimized models of the product/process/material interaction, integrating domain knowledge and technical expertise. These models are then coupled with multi-objective optimization algorithms to simulate nonlinear processes (extrusion, injection, stamping, etc.). The focus is on:

  • Modeling the physical phenomena during material forming (large deformations, high temperatures, intense friction).

  • Developing hybrid optimization algorithms, integrated into finite element analysis software to solve complex problems.

Development of biomaterials for eco-design
This area focuses on the development of bio-composites from non-food plant biomass for applications in construction and transportation. The goal is to create new bio-based materials, measure their mechanical properties, and develop economic models for the production of these materials for structural use.

Skip to content