

# Partial Differential Equations

Jonas Lampart

Lecture Notes Spring 2025<sup>1</sup>

---

<sup>1</sup>These lecture notes are a draft and likely to contain mistakes. Please report any typos, errors, or suggestions to [jonas.lampart@u-bourgogne.fr](mailto:jonas.lampart@u-bourgogne.fr). Version of January 12, 2026

# Contents

|                                                                            |           |
|----------------------------------------------------------------------------|-----------|
| <b>1. Introduction</b>                                                     | <b>2</b>  |
| 1.1. Examples . . . . .                                                    | 2         |
| <b>2. Linear PDEs with constant coefficients and the Fourier transform</b> | <b>4</b>  |
| 2.1. Basic properties . . . . .                                            | 4         |
| 2.2. The Schwartz space $\mathcal{S}$ . . . . .                            | 5         |
| <b>A. Appendix</b>                                                         | <b>8</b>  |
| A.1. The Lebesgue integral . . . . .                                       | 8         |
| <b>B. Notation</b>                                                         | <b>12</b> |

# 1. Introduction

A partial differential equation (PDE) is an equation whose ‘unknown’ is a function  $u$ , and in which (partial) derivatives of that function appear. This is similar to an ordinary differential equation (ODE) but the difference is that the unknown function

$$u : \mathbb{R}^d \rightarrow \mathbb{R} \text{ (or } \mathbb{C})$$

depends on more than one variable,  $d \geq 2$ , and derivatives in different directions play a role. Such equations, or systems of equations, arise in many contexts mathematics and applications in physics, engineering, and the sciences – such as electrodynamics, quantum mechanics, dynamics of weather and climate, and the description of materials.

## 1.1. Examples

1. The heat equation

$$\partial_t u(t, x) = \Delta_x u(t, x) \quad (1.1)$$

describes diffusion of heat in a (homogeneous, isotropic) medium.

2. Schrödinger’s equation

$$i\partial_t \psi(t, x) = -\Delta_x \psi(t, x) + V(x)\psi(t, x) \quad (1.2)$$

describes the wave-function of a quantum particle in an external potential  $V$ .

3. The Poisson equation

$$\Delta u(x) = \rho(x) \quad (1.3)$$

gives the electric potential generated by the (static) charge distribution  $\rho$ . Maxwell’s equations give a more complete description of electrodynamics.

4. The Euler equation

$$\begin{cases} \partial_t v(t, x) + v(t, x) \cdot D_x v(t, x) + \text{grad}_x p(t, x) = 0 \\ \text{div}_x v(t, x) = 0 \end{cases} \quad (1.4)$$

describes the velocity field  $v : \mathbb{R}^d \rightarrow \mathbb{R}^d$  and pressure  $p : \mathbb{R}^d \rightarrow \mathbb{R}$  of an incompressible, inviscid fluid. Similar systems, like the Navier-Stokes equations, are used to model the dynamics of fluids and gases with different properties, e.g. water waves or atmospheric currents.

### 1.1. Examples

#### 5. The Cauchy-Riemann equations

$$\begin{cases} \partial_x u(x, y) - \partial_y v(x, y) = 0 \\ \partial_y u(x, y) + \partial_x v(x, y) = 0 \end{cases} \quad (1.5)$$

are satisfied by the real and imaginary part of every holomorphic function  $f = u + iv : \mathbb{C} \cong \mathbb{R}^2 \rightarrow \mathbb{C}$ .

Let  $\alpha \in \mathbb{N}_0^d$  be a ‘multi-index’ and set

$$\partial^\alpha := \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \cdots \partial x_d^{\alpha_d}}, \quad (1.6)$$

where  $|\alpha| = \sum_{j=1}^d \alpha_j$ . That is,  $\alpha_j$  is the number of partial derivatives in direction  $j$  and  $|\alpha|$  is the total number of derivatives. Since for  $u \in C^k(U, \mathbb{C}^n)$  the partial derivatives can be taken in any order, we can thus express the tensor  $D^k u$  by

$$(D^k u)_{j_1, \dots, j_k} = \frac{\partial^k u}{\partial x_{j_k} \cdots \partial x_{j_1}} = \partial^\alpha u \quad (1.7)$$

where  $\alpha_i$  is the number of partial derivatives taken in the  $i$ -th direction, and  $|\alpha| = k$ .

Note that we have the generalised Leibniz rule

$$\partial^\alpha(fg) = \sum_{\beta \leq \alpha} \binom{\alpha}{\beta} (\partial^\beta f)(\partial^{\alpha-\beta} g), \quad (1.8)$$

where  $\beta \leq \alpha$  if  $\beta \leq \alpha$  if  $\beta_j \leq \alpha_j$  for all  $j = 1, \dots, d$ , and the binomial coefficients are generalised as

$$\binom{\alpha}{\beta} = \prod_{j=1}^d \binom{\alpha_j}{\beta_j}. \quad (1.9)$$

**Definition 1.1** (Linear PDE). A PDE is called (inhomogeneous) linear PDE of order  $k$  if it has the form

$$\sum_{|\alpha| \leq k} a_\alpha(x) \partial^\alpha u = f(x), \quad (1.10)$$

where  $a_\alpha : \mathbb{R}^d \rightarrow \mathbb{C}^{n \times n}$ , for  $|\alpha| \leq k$ , and  $f : \mathbb{R}^d \rightarrow \mathbb{C}^n$ . The functions  $a_\alpha$  are called the coefficients, and the PDE is called homogeneous if  $f = 0$ .

**Question 1.2.** Which of the examples in Sect. 1.1 are linear (in-) homogeneous PDEs?

## 2. Linear PDEs with constant coefficients and the Fourier transform

A particularly simple case of linear differential equations are those with constant coefficients, where the functions  $a_\alpha(x) \equiv a_\alpha$  are independent of  $x$ . These can be transformed into simpler equations by the Fourier transform.

For  $f \in L^1(\mathbb{R}^d)$ , the Fourier transform is defined by

$$\hat{f}(p) = (\mathcal{F}f)(p) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} e^{-ip \cdot x} f(x) dx. \quad (2.1)$$

Formally, we have with  $p^\alpha = \prod_{j=1}^d p_j^{\alpha_j}$

$$\begin{aligned} p^\alpha \hat{f}(p) &= \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} p^\alpha e^{-ip \cdot x} f(x) dx \\ &= \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} (-i)^{-|\alpha|} (\partial_x^\alpha e^{-ip \cdot x}) f(x) dx \\ &\stackrel{!}{=} \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} (i)^{|\alpha|} (-1)^{|\alpha|} e^{-ip \cdot x} \partial_x^\alpha f(x) dx \\ &= (-i)^{|\alpha|} \widehat{\partial_x^\alpha f}(p), \end{aligned}$$

but the integration by parts (without boundary terms!) in the penultimate step certainly needs justification.

If we accept this identity, the linear PDE of Def. 1.1 becomes after transformation

$$\left( \sum_{|\alpha| \leq k} a_\alpha (ip)^\alpha \right) \hat{u}(p) = \hat{f}(p). \quad (2.2)$$

Any solution then satisfies, formally,

$$\hat{u}(p) \stackrel{!}{=} \left( \sum_{|\alpha| \leq k} a_\alpha (ip)^\alpha \right)^{-1} \hat{f}(p).$$

To recover the solution  $u$ , however, we will need to invert the Fourier transform.

### 2.1. Basic properties

A few important properties of the Fourier transform of  $f \in L^1(\mathbb{R}^d)$  follow immediately from the definition.

**Proposition 2.1.** Let  $f \in L^1(\mathbb{R}^d)$ , denote by  $\hat{f}$  its Fourier transform (2.1) and denote by  $Rf(x) = f(-x)$  the reflection at  $x = 0$  and  $T_a f(x) = f(x - a)$  the translation. Then

a)  $\widehat{T_a f} = e^{-i a p} \hat{f}$

b)  $\widehat{T_a \hat{f}} = \widehat{e^{i a x} f}$

c)  $\widehat{Rf} = \widehat{R} \widehat{f}$

d)  $\widehat{\bar{f}} = \widehat{Rf}$

e) If  $f$  is real and even ( $Rf = f$ ) then  $\hat{f}$  is also real and even.

*Proof.* Properties a)–d) follow from simple changes of variables (exercise). Property e) follows by combining c) and d).  $\square$

The Dominated Convergence Theorem A.9 also yields that  $\hat{f}$  is continuous.

**Lemma 2.2.** Let  $f \in L^1(\mathbb{R}^d)$  and  $\hat{f}$  its Fourier transform (2.1), then  $\hat{f}$  is continuous.

*Proof.* Let  $p_n \rightarrow p$  be a convergent sequence. Then since  $|e^{-ip_n x} f(x)| \leq |f(x)| \in L^1(\mathbb{R}^d)$

$$\lim_{n \rightarrow \infty} \hat{f}(p_n) = \lim_{n \rightarrow \infty} \frac{1}{(2\pi)^{d/2}} \int e^{-ip_n x} f(x) dx = \frac{1}{(2\pi)^{d/2}} \int \lim_{n \rightarrow \infty} e^{-ip_n x} f(x) dx = \hat{f}(p) \quad (2.3)$$

by Dominated Convergence A.9, which proves the claim.  $\square$

## 2.2. The Schwartz space $\mathcal{S}$

In order to make the formal calculations from the introduction rigorous and derive consequences for the solutions to the PDE, we start by introducing a class of functions on which the calculations can easily be justified. We will later expand beyond this class by approximation arguments.

A good framework to consider identities such as (2.2) is the space of Schwartz functions, where we can

- differentiate
- multiply by polynomials
- define the Fourier transform and its inverse.

**Definition 2.3.** The Schwartz space is

$$\mathcal{S}(\mathbb{R}^d) := \left\{ f \in C^\infty(\mathbb{R}^d) \mid \forall \alpha, \beta \in \mathbb{N}_0^d : \sup_{x \in \mathbb{R}^d} |x^\alpha \partial_x^\beta f(x)| < \infty \right\}. \quad (2.4)$$

A sequence  $f_n, n \in \mathbb{N}$  in  $\mathcal{S}$  converges to  $f \in \mathcal{S}$  iff

$$\forall \alpha, \beta \in \mathbb{N}_0^d : \lim_{n \rightarrow \infty} \|f_n - f\|_{\alpha, \beta} = 0, \quad (2.5)$$

## 2. Linear PDEs with constant coefficients and the Fourier transform

where

$$\|f\|_{\alpha,\beta} := \sup_{x \in \mathbb{R}^d} |x^\alpha \partial_x^\beta f(x)|. \quad (2.6)$$

A map  $T : \mathcal{S}(\mathbb{R}^d) \rightarrow X$  into a metric space  $X$  is continuous iff  $T$  is sequentially continuous, that is, if for every sequence  $f_n$  converging to  $f \in \mathcal{S}(\mathbb{R}^d)$

$$\lim_{n \rightarrow \infty} Tf_n = Tf \quad (2.7)$$

converges in  $X$ .

**Question 2.4.** Which of the following functions are elements of  $\mathcal{S}(\mathbb{R})$ ?

1.  $x \mapsto \cos(x)$ ,
2.  $x \mapsto \cosh(x)^{-1} = 2(e^x + e^{-x})^{-1}$ ,
3.  $x \mapsto e^{-|x|}$ ,
4.  $x \mapsto e^{-x^2}$ .

**Remark 2.5.** The space  $\mathcal{S}$  is a complete metric space with the distance

$$d(f, g) = \sum_{n \in \mathbb{N}_0} 2^{-n} \max_{|\alpha|+|\beta|=n} \frac{\|f - g\|_{\alpha,\beta}}{1 + \|f - g\|_{\alpha,\beta}}. \quad (2.8)$$

The notion of convergence defined above is the same as the convergence in the metric  $d$ .

**Remark 2.6.** Functions in  $\mathcal{S}$  are smooth by definition, and decrease faster than any inverse polynomial. Hence  $\mathcal{S} \subset L^\infty$  with  $\|f\|_\infty = \|f\|_{0,0}$ , and  $\mathcal{S} \subset L^p$  for any  $1 \leq p < \infty$ , as by the multinomial formula

$$\begin{aligned} |f(x)| &\leq (1 + x^{2d})^{-1} \sup_{y \in \mathbb{R}^d} |(1 + y^{2d})f(y)| \\ &\leq (1 + x^{2d})^{-1} \sup_{y \in \mathbb{R}^d} \left| \left( 1 + \sum_{|\alpha|=d} \frac{d!}{\alpha!} y^{2\alpha} \right) f(y) \right| \\ &\leq (1 + x^{2d})^{-1} (\|f\|_{0,0} + \sum_{|\alpha|=d} \frac{d!}{\alpha!} \|f\|_{2\alpha,0}), \end{aligned}$$

and

$$\int (1 + x^{2d})^{-1} < \infty \quad (2.9)$$

for  $p \geq 1$ .

For  $f, g \in \mathcal{S}(\mathbb{R}^d)$  we define the convolution by

$$(f * g)(x) := \int f(x - y)g(y)dy. \quad (2.10)$$

## 2.2. The Schwartz space $\mathcal{S}$

**Lemma 2.7.** Let  $f, g \in \mathcal{S}(\mathbb{R}^d)$  with  $\int g = 1$  and set  $g_n(x) = n^d g(nx)$ , then

$$\lim_{n \rightarrow \infty} (f * g_n)(x) = f(x).$$

*Proof.* By a change of variable

$$\int f(x-y) n^d g(ny) dy = \int f(x - n^{-1}y) g(y) dy. \quad (2.11)$$

Now the integrand converges pointwise to  $f(x)g(y)$  and is bounded by  $\|f\|_\infty |g(y)| \in L^1$ , so the integral converges to  $f(x) \int g = f(x)$  by Dominated Convergence.  $\square$

With this Lemma, we can prove the Fourier inversion theorem on  $\mathcal{S}$ .

**Proposition 2.8.** Define

$$(\mathcal{F}^{-1} f)(x) := \frac{1}{(2\pi)^{d/2}} \int e^{ipx} f(p) dp.$$

Then for all  $f \in \mathcal{S}(\mathbb{R}^d)$ ,

$$f = \mathcal{F}^{-1} \mathcal{F} f = \mathcal{F} \mathcal{F}^{-1} f.$$

*Proof.* We admit that  $\hat{f} \in \mathcal{S}$ , which is proved in Proposition ?? below. Let  $g(x) = e^{-x^2/2}$  and  $g_n(x) = g(n^{-1}x)$ . Then

$$(\mathcal{F}^{-1} \hat{f})(x) = \lim_{n \rightarrow \infty} \frac{1}{(2\pi)^{d/2}} \int e^{ipx} g_n(p) \hat{f}(p) dp \quad (2.12)$$

by Dominated Convergence. On the other hand, by Fubini,

$$\frac{1}{(2\pi)^{d/2}} \int e^{ipx} g_n(p) \hat{f}(p) dp = \frac{1}{(2\pi)^d} \int e^{ipx} e^{-ipy} g_n(p) f(y) dy dp = \frac{(\hat{g}_n * f)(x)}{(2\pi)^{d/2}}. \quad (2.13)$$

Now  $\hat{g}_n(x) = n^d e^{-n^2 x^2/2}$  (see Problem ??), so by the preceding lemma

$$\lim_{n \rightarrow \infty} (\hat{g}_n * f)(x) = f(x) \int g = (2\pi)^{d/2} f(x), \quad (2.14)$$

and thus  $(\mathcal{F}^{-1} \hat{f})(x) = f(x)$ . The proof for  $\mathcal{F}(\mathcal{F}^{-1} f)(x) = f(x)$  is the same.  $\square$

# A. Appendix

## A.1. The Lebesgue integral

This section summarizes those results from the theory of integration that are most important for the course, see [Ru] for an introduction and [LL] for more details.

Let  $\mathcal{B}(\mathbb{R}^d)$  be the Borel  $\sigma$ -algebra on  $\mathbb{R}^d$ . That is, the smallest collection of subsets  $B \subset \mathbb{R}^d$  that contains all open sets and is closed under complements, finite intersections and countable unions. Elements of  $\mathcal{B}$  are called measurable sets.

**Definition A.1.** A measure is a function

$$\mu : \mathcal{B}(\mathbb{R}^d) \rightarrow \mathbb{R}_+ \cup \{\infty\}$$

with the properties

$$\begin{aligned} \mu(\emptyset) &= 0 \\ \mu\left(\bigcup_{j=1}^{\infty} B_j\right) &= \sum_{j=1}^{\infty} \mu(B_j) \end{aligned}$$

for any family of disjoint sets  $(B_j)_{j \in \mathbb{N}}$ .

The Lebesgue measure  $\lambda$  is the unique measure that is invariant by translation and satisfies  $\lambda([0, 1]^d) = 1$ .

**Definition A.2.** A function  $f : \mathbb{R}^d \rightarrow \mathbb{C}$  is called measurable if for every  $B \in \mathcal{B}(\mathbb{C}) \cong \mathcal{B}(\mathbb{R}^2)$

$$f^{-1}(B) = \{x \in \mathbb{R}^d : f(x) \in B\}$$

is measurable, i.e., an element of  $\mathcal{B}(\mathbb{R}^d)$ .

The characteristic function  $\chi_B$  of any set  $B \in \mathcal{B}(\mathbb{R}^d)$  is measurable. Its integral is defined as

$$\int \chi_B(x) \lambda(dx) = \lambda(B). \quad (\text{A.1})$$

A simple function is a linear combination of characteristic functions. Any measurable function is the pointwise limit of simple functions,

$$f(x) = \lim_{n \rightarrow \infty} \sum_{j=1}^n a_{j,n} \chi_{B_{j,n}}(x). \quad (\text{A.2})$$

### A.1. The Lebesgue integral

Moreover, if  $f$  is *non-negative*, the simple functions can be chosen so that the value in each point is increasing in  $n$ . For a non-negative function one thus defines

$$\int f(x)\lambda(dx) := \lim_{n \rightarrow \infty} \sum_{j=1}^n a_{j,n} \lambda(B_{j,n}) \in \mathbb{R}_+ \cup \{\infty\}. \quad (\text{A.3})$$

Since the right hand side is an increasing sequence of numbers that are positive or  $+\infty$ , this is well defined but possibly infinite.

**Definition A.3.** A positive measurable function  $f : \mathbb{R}^d \rightarrow \mathbb{R}_+$  is called integrable if (A.3) is finite.

A measurable function  $f : \mathbb{R}^d \rightarrow \mathbb{C}$  is called integrable if  $|f|$  is integrable.

If  $f : \mathbb{R}^d \rightarrow \mathbb{C}$  is integrable, then

$$\int f(x)dx = \int f(x)\lambda(dx) = \lim_{n \rightarrow \infty} \sum_{j=1}^n a_{j,n} \lambda(B_{j,n}) \quad (\text{A.4})$$

is a well-defined complex number.

If  $A \in \mathcal{B}(\mathbb{R}^d)$  is a measurable set we define

$$\int_A f(x)dx = \int \chi_A(x)f(x)dx, \quad (\text{A.5})$$

where  $\chi_A$  is the characteristic function. We say that  $f$  is integrable on  $A$  if  $f\chi_A$  is integrable.

If  $f$  is Riemann-integrable then  $f$  is Lebesgue-integrable and the integrals are equal [Ru, Thm.11.33].

**Definition A.4** (Lebesgue spaces). Let  $1 \leq p < \infty$

$$\mathcal{L}^p(\mathbb{R}^d) := \{f : \mathbb{R}^d \rightarrow \mathbb{C} : |f|^p \text{ is integrable}\}.$$

The Lebesgue space  $L^p(\mathbb{R}^d)$  is the quotient of  $\mathcal{L}^p(\mathbb{R}^d)$  under the equivalence relation

$$f \sim g \Leftrightarrow \lambda(\{x : f(x) \neq g(x)\}) = 0$$

of equality almost everywhere. It is a Banach space with the norm

$$\|f\|_p = \left( \int |f|^p(x)dx \right)^{1/p},$$

where  $f$  is any representative in the equivalence class.

For  $p = \infty$  we define  $\mathcal{L}^\infty(\mathbb{R}^d)$  as the space of measurable functions for which

$$\|f\|_\infty = \text{ess-sup}|f| := \inf \left\{ t \in \mathbb{R} : \lambda(f^{-1}(t, \infty)) = 0 \right\} \quad (\text{A.6})$$

is finite. The Lebesgue space  $L^\infty(\mathbb{R}^d)$  is the quotient of  $\mathcal{L}^\infty(\mathbb{R}^d)$  by the same equivalence relation.

## A. Appendix

**Proposition A.5** (Hölder's inequality). *Let  $1 \leq p, q \leq \infty$  so that  $p^{-1} + q^{-1} = 1$ , with the convention that  $\infty^{-1} = 0$ . Then for  $f \in L^p(\mathbb{R}^d)$ ,  $g \in L^q(\mathbb{R}^d)$  we have  $fg \in L^1(\mathbb{R}^d)$  and*

$$\left| \int f(x)g(x)dx \right| \leq \|f\|_p \|g\|_q. \quad (\text{A.7})$$

For  $d > 1$  an important result concerns the relation of the  $d$ -dimensional integral and the iteration of lower-dimensional integrals.

**Theorem A.6.** *Fubini-Tonelli* *Let  $n, m \geq 1$ ,  $f : \mathbb{R}^n \times \mathbb{R}^m \rightarrow \mathbb{R}_+$  be a measurable function and  $A \in \mathcal{B}(\mathbb{R}^{n+m})$ .*

a) *If  $f \geq 0$ , then*

$$\int_A f(x, y) \lambda(d(x, y)) = \int_{\pi_1(A)} \left( \int_{\pi_1^{-1}(\{x\}) \cap A} f(x, y) dy \right) dx = \int_{\pi_2(A)} \left( \int_{\pi_2^{-1}(\{y\}) \cap A} f(x, y) dx \right) dy$$

where  $\pi_j(A)$ ,  $j = 1, 2$  are the projections of  $A$  to  $\mathbb{R}^n$ ,  $\mathbb{R}^m$  respectively, and the equality is understood in the sense that if one expression is infinite, all are.

b) *If  $f$  is integrable on  $A$ , then*

a) *The functions*

$$x \mapsto f(x, y), \quad y \mapsto f(x, y)$$

*are integrable on  $\pi_2^{-1}(\{y\}) \cap A$  for almost every  $y \in \mathbb{R}^m$ , respectively on  $\pi_1^{-1}(\{x\}) \cap A$  for almost every  $x \in \mathbb{R}^n$ ;*

b) *the functions (set equal to zero where the integral is not defined)*

$$\varphi(y) = \int_{\pi_2^{-1}(\{y\}) \cap A} f(x, y) dx, \quad \psi(x) = \int_{\pi_1^{-1}(\{x\}) \cap A} f(x, y) dy$$

*are integrable;*

c) *the identity*

$$\int_{\pi_2(A)} \varphi(y) dy = \int_A f(x, y) dy = \int_{\pi_1(A)} \psi(x) dx$$

*holds.*

The well-known transformation formula holds for the Lebesgue integral.

**Theorem A.7** (Change of variables). *Let  $A \in \mathcal{B}(\mathbb{R}^d)$ , let  $\varphi : \mathbb{R}^d \rightarrow \mathbb{R}^d$  be a  $C^1$ -diffeomorphism, and denote by  $|J(x)| := |\det D\varphi(x)|$ . Then if  $f$  is integrable on  $A$ ,  $x \mapsto f(\varphi(x))|J(x)|$  is integrable on  $\varphi^{-1}(A)$  and*

$$\int_A f(x) dx = \int_{\varphi^{-1}(A)} f(\varphi(x))|J(x)| dx.$$

The most important properties of the Lebesgue integral are the convergence theorems.

**Theorem A.8** (Monotone Convergence). *Let  $(f_n)_n \in \mathbb{N}$  be a sequence of measurable functions with  $f_n \leq f_{n+1}$  and*

$$\lim_{n \rightarrow \infty} f_n(x) = f(x)$$

*almost everywhere for some function  $f : \mathbb{R}^d \rightarrow \mathbb{C}$ . Then  $f$  is measurable and*

$$\lim_{n \rightarrow \infty} \int f_n(x) dx = \int f(x) dx.$$

**Theorem A.9** (Dominated Convergence). *Let  $(f_n)_{n \in \mathbb{N}}$  be a sequence of integrable functions and assume there is a measurable function  $f$  so that*

$$\lim_{n \rightarrow \infty} f_n(x) = f(x)$$

*almost everywhere. Assume moreover that there exists a positive, integrable function  $g$  so that*

$$\forall n \in \mathbb{N} : |f_n| \leq g$$

*almost everywhere. Then  $f$  is integrable and*

$$\lim_{n \rightarrow \infty} \int f_n(x) dx = \int f(x) dx.$$

An important corollary to this result concerns the exchange of integration and differentiation.

**Corollary A.10.** *Let  $U \subset \mathbb{R}^k$  be open and  $f : U \times \mathbb{R}^d \rightarrow \mathbb{C}$  a measurable function such that*

1. *for all  $\eta \in U$ ,  $x \mapsto f(\eta, x)$  is integrable,*
2. *for almost all  $x \in \mathbb{R}^d$ ,  $\eta \mapsto f(\eta, x)$  is continuously differentiable,*
3. *there exists a positive, integrable function  $g : \mathbb{R}^d \rightarrow \mathbb{R}_+$  with*

$$\forall \eta \in U : |\nabla_\eta f(\eta, x)| \leq g(x).$$

*Then  $\eta \mapsto \int f(\eta, x) dx$  is continuously differentiable and for all  $j = 1, \dots, k$*

$$\partial_{\eta_j} \int f(\eta, x) dx = \int \partial_{\eta_j} f(\eta, x) dx.$$

## B. Notation

| Symbol                       | Explanation                                                                                                                           | Page |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------|
| $\mathbb{N}$                 | Natural numbers (not including zero!)                                                                                                 |      |
| $\mathbb{N}_0$               | $\mathbb{N} \cup \{0\}$                                                                                                               |      |
| $D$                          | Differential of a vector-valued function                                                                                              |      |
| $\text{grad}$                | Gradient of a scalar function, $\text{grad } f = Df$                                                                                  |      |
| $\text{div}$                 | Divergence of a vector field, $\text{div } v = \text{Tr}(Dv)$                                                                         |      |
| $B(x, r)$                    | Open ball of radius $r$ around $x$                                                                                                    |      |
| $\mathcal{S}(\mathbb{R}^d)$  | Space of Schwartz functions on $\mathbb{R}^d$                                                                                         | 5    |
| $\mathcal{S}'(\mathbb{R}^d)$ | Space of tempered distributions on $\mathbb{R}^d$                                                                                     | ??   |
| $L^p(\mathbb{R}^d)$          | Lebesgue space of $p$ -integrable functions                                                                                           | 9    |
| $H^k(\mathbb{R}^d)$          | Sobolev space of functions in $L^2(\mathbb{R}^d)$ with $k$ weak derivatives in $L^2$                                                  | ??   |
| $X$                          | Usually a complex Banach space                                                                                                        |      |
| $\mathcal{B}(X, Y)$          | Banach space of bounded linear operators from $X$ to $Y$                                                                              |      |
| $\mathcal{B}(X)$             | Banach space of bounded linear operators from $X$ to $X$                                                                              |      |
| $X'$                         | Space of continuous linear functionals on $X$ ( $=\mathcal{B}(X, \mathbb{C})$ )                                                       | ??   |
| $\mathcal{H}$                | Complex (separable) Hilbert space                                                                                                     |      |
| $A, D(A)$                    | Densely defined linear operator                                                                                                       | ??   |
| $\mathcal{G}(A)$             | Graph of $A$                                                                                                                          | ??   |
| $\overline{A}$               | Closure of $(A, D(A))$                                                                                                                | ??   |
| $\ \cdot\ _{D(A)}$           | Graph norm on $D(A)$                                                                                                                  | ??   |
| $A^*$                        | (Hilbert) adjoint of $(A, D(A))$                                                                                                      | ??   |
| $\ker(A)$                    | Kernel of $A$                                                                                                                         |      |
| $\text{ran}(A)$              | Range of $A$                                                                                                                          |      |
| $\rho(A)$                    | Resolvent set of $A$                                                                                                                  | ??   |
| $R_z(A)$                     | Resolvent of $A$ in $z \in \rho(A)$ , $(A - z)^{-1}$                                                                                  | ??   |
| $\sigma(A)$                  | Spectrum of $A$                                                                                                                       | ??   |
| $C^k(U)$                     | Space of $k$ -times continuously differentiable functions $U \rightarrow \mathbb{C}$                                                  |      |
| $C_0^k(U)$                   | Space of $k$ -times continuously differentiable functions $U \rightarrow \mathbb{C}$ with compact support, $\text{supp } f \Subset U$ |      |

# Bibliography

- [FA] Guiseppe Dito, Functional analysis. Lecture notes, Université de Bourgogne, 2024.
- [Bre] Haim Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, 2011.
- [LL] Elliott H. Lieb, and Michael Loss, Analysis. American Mathematical Society, 2001.
- [RS1] Michael Reed and Barry Simon, Methods of modern mathematical physics: I Functional analysis (2nd ed.). Academic press, 1980.
- [RS2] Michael Reed and Barry Simon, Methods of modern mathematical physics: II Fourier analysis, self-adjointness. Academic Press, 1975.
- [Ru] Walter Rudin, Principles of Mathematical Analysis (3rd ed.). McGraw Hill, 1976.