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1. Introduction

A partial differential equation (PDE) is an equation whose ‘unknown’ is a function u,
and in which (partial) derivatives of that function appear. This is similar to an ordinary
differential equation (ODE) but the difference is that the unknown function

u : Rd → R (or C)

depends on more than one variable, d ≥ 2, and derivatives in different directions play
a role. Such equations, or systems of equations, arise in many contexts mathematics
and applications in physics, engineering, and the sciences – such as electrodynamics,
quantum mechanics, dynamics of weather and climate, and the description of materials.

1.1. Examples
1. The heat equation

∂tu(t, x) = ∆xu(t, x) (1.1)

describes diffusion of heat in a (homogeneous, isotropic) medium.

2. Schrödinger’s equation

i∂tψ(t, x) = −∆xψ(t, x) + V (x)ψ(t, x) (1.2)

describes the wave-function of a quantum particle in an external potential V .

3. The Poisson equation
∆u(x) = ρ(x) (1.3)

gives the electric potential generated by the (static) charge distribution ρ. Maxwell’s
equations give a more complete description of electrodynamics.

4. The Euler equation{
∂tv(t, x) + v(t, x) ·Dxv(t, x) + gradx p(t, x) = 0

divx v(t, x) = 0
(1.4)

describes the velocity field v : Rd → Rd and pressure p : Rd → R of an incompress-
ible, inviscid fluid. Similar systems, like the Navier-Stokes equations, are used to
model the dynamics of fluids and gases with different properties, e.g. water waves
or atmospheric currents.
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1.1. Examples

5. The Cauchy-Riemann equations{
∂xu(x, y) − ∂yv(x, y) = 0
∂yu(x, y) + ∂xv(x, y) = 0

(1.5)

are satisfied by the real and imaginary part of every holomorphic function f =
u+ iv : C ∼= R2 → C.

Let α ∈ Nd0 be a ‘multi-index’ and set

∂α := ∂|α|

∂α1
x1 · · · ∂αd

xd

, (1.6)

where |α| = ∑d
j=1 αj . That is, αj is the number of partial derivatives in direction j and

|α| is the total number of derivatives. Since for u ∈ Ck(U,Cn) the partial derivatives
can be taken in any order, we can thus express the tensor Dku by

(Dku)j1,...,jk = ∂ku

∂xjk · · · ∂xj1
= ∂αu (1.7)

where αi is the number of partial derivatives taken in the i-th direction, and |α| = k.
Note that we have the generalised Leibniz rule

∂α(fg) =
∑
β≤α

(
α
β

)
(∂βf)(∂α−βg), (1.8)

where β ≤ α if β ≤ α if βj ≤ αj for all j = 1, . . . , d, and the binomial coefficients are
generalised as (

α
β

)
=

d∏
j=1

(
αj
βj

)
. (1.9)

Definition 1.1 (Linear PDE). A PDE is called (inhomogneous) linear PDE of order k
if it has the form ∑

|α|≤k
aα(x)∂αu = f(x), (1.10)

where aα : Rd → Cn×n, for |α| ≤ k, and f : Rd → Cn. The functions aα are called the
coefficients, and the PDE is called homogeneous if f = 0.

Question 1.2. Which of the examples in Sect. 1.1 are linear (in-) homogeneous PDEs?
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2. Linear PDEs with constant coefficients
and the Fourier transform

A particularly simple case of linear differential equations are those with constant coeffi-
cients, where the functions aα(x) ≡ aα are independent of x. These can be transformed
into simpler equations by the Fourier transform.

For f ∈ L1(Rd), the Fourier transform is defined by

f̂(p) = (Ff)(p) = 1
(2π)d/2

∫
Rd

e−ip·xf(x)dx. (2.1)

Formally, we have with pα = ∏d
j=1 p

αj

j

pαf̂(p) = 1
(2π)d/2

∫
Rd
pαe−ip·xf(x)dx

= 1
(2π)d/2

∫
Rd

(−i)−|α|(∂αx e−ip·x)f(x)dx

!= 1
(2π)d/2

∫
Rd

(i)|α|(−1)|α|e−ip·x∂αx f(x)dx

= (−i)|α|∂̂αx f(p),

but the integration by parts (without boundary terms!) in the penultimate step certainly
needs justification.

If we accept this identity, the linear PDE of Def. 1.1 becomes after transformation( ∑
|α|≤k

aα(ip)α
)
û(p) = f̂(p). (2.2)

Any solution then satisfies, formally,

û(p) !=
( ∑

|α|≤k
aα(ip)α

)−1
f̂(p).

To recover the solution u, however, we will need to invert the Fourier transform.

2.1. Basic properties
A few important properties of the Fourier transform of f ∈ L1(Rd) follow immediately
from the definition.
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2.2. The Schwartz space S

Proposition 2.1. Let f ∈ L1(Rd), denote by f̂ its Fourier transform (2.1) and denote
by Rf(x) = f(−x) the reflection at x = 0 and Taf(x) = f(x− a) the translation. Then

a) T̂af = e−iapf̂

b) Taf̂ = êiaxf

c) Rf̂ = R̂f

d) f̂ = Rf̂

e) If f is real and even (Rf = f) then f̂ is also real and even.

Proof. Properties a)–d) follow from simple changes of variables (exercise). Property e)
follows by combining c) and d).

The Dominated Convergence Theorem A.9 also yields that f̂ is continuous.

Lemma 2.2. Let f ∈ L1(Rd) and f̂ its Fourier transform (2.1), then f̂ is continuous.

Proof. Let pn → p be a convergent sequence. Then since |e−ipnxf(x)| ≤ |f(x)| ∈ L1(Rd)

lim
n→∞

f̂(pn) = lim
n→∞

1
(2π)d/2

∫
e−ipnxf(x)dx = 1

(2π)d/2

∫
lim
n→∞

e−ipnxf(x)dx = f̂(p)

(2.3)
by Dominated Convergence A.9, which proves the claim.

2.2. The Schwartz space S

In order to make the formal calculations from the introduction rigorous and derive
consequences for the solutions to the PDE, we start by introducing a class of functions
on which the calculations can easily be justified. We will later expand beyond this class
by approximation arguments.

A good framework to consider identities such as (2.2) is the space of Schwartz func-
tions, where we can

• differentiate

• multiply by polynomials

• define the Fourier transform and its inverse.

Definition 2.3. The Schwartz space is

S (Rd) :=
{
f ∈ C∞(Rd)

∣∣∣∀α, β ∈ Nd0 : sup
x∈Rd

|xα∂βxf(x)| < ∞
}
. (2.4)

A sequence fn, n ∈ N in S converges to f ∈ S iff

∀α, β ∈ Nd0 : lim
n→∞

∥fn − f∥α,β = 0, (2.5)
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2. Linear PDEs with constant coefficients and the Fourier transform

where
∥f∥α,β := sup

x∈Rd

|xα∂βxf(x)|. (2.6)

A map T : S (Rd) → X into a metric space X is continuous iff T is sequentially
continuous, that is, if for every sequence fn converging to f ∈ S (Rd)

lim
n→∞

Tfn = Tf (2.7)

converges in X.

Question 2.4. Which of the following functions are elements of S (R)?

1. x 7→ cos(x),

2. x 7→ cosh(x)−1 = 2(ex + e−x)−1,

3. x 7→ e−|x|,

4. x 7→ e−x2 .

Remark 2.5. The space S is a complete metric space with the distance

d(f, g) =
∑
n∈N0

2−n max
|α|+|β|=n

∥f − g∥α,β
1 + ∥f − g∥α,β

. (2.8)

The notion of convergence defined above is the same as the convergence in the metric d.

Remark 2.6. Functions in S are smooth by definition, and decrease faster than any
inverse polynomial. Hence S ⊂ L∞ with ∥f∥∞ = ∥f∥0,0, and S ⊂ Lp for any 1 ≤ p <
∞, as by the multinomial formula

|f(x)| ≤ (1 + x2d)−1 sup
y∈Rd

|(1 + y2d)f(y)|

≤ (1 + x2d)−1 sup
y∈Rd

∣∣∣(1 +
∑

|α|=d

d!
α!y

2α
)
f(y)

∣∣∣
≤ (1 + x2d)−1(∥f∥0,0 +

∑
|α|=d

d!
α!∥f∥2α,0),

and ∫
(1 + x2d)−1 < ∞ (2.9)

for p ≥ 1.

For f, g ∈ S (Rd) we define the convolution by

(f ∗ g)(x) :=
∫
f(x− y)g(y)dy. (2.10)
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2.2. The Schwartz space S

Lemma 2.7. Let f, g ∈ S (Rd) with
∫
g = 1 and set gn(x) = ndg(nx), then

lim
n→∞

(f ∗ gn)(x) = f(x).

Proof. By a change of variable∫
f(x− y)ndg(ny)dy =

∫
f(x− n−1y)g(y)dy. (2.11)

Now the integrand converges pointwise to f(x)g(y) and is bounded by ∥f∥∞|g(y)| ∈ L1,
so the integral converges to f(x)

∫
g = f(x) by Dominated Convergence.

With this Lemma, we can prove the Fourier inversion theorem on S .

Proposition 2.8. Define

(F −1f)(x) := 1
(2π)d/2

∫
eipxf(p)dp.

Then for all f ∈ S (Rd),
f = F −1Ff = FF −1f.

Proof. We admit that f̂ ∈ S , which is proved in Proposition 2.9 below. Let g(x) =
e−x2/2 and gn(x) = g(n−1x). Then

(F −1f̂(x) = lim
n→∞

1
(2π)d/2

∫
eipxgn(p)f(p)dp (2.12)

by Dominated Convergence. On the other hand, by Fubini,

1
(2π)d/2

∫
eipxgn(p)f̂(p)dp = 1

(2π)d
∫

eipxe−ipygn(p)f(y)dydp = (ĝn ∗ f)(x)
(2π)d/2 . (2.13)

Now ĝn(x) = nde−n2x2/2 (see Problem 2), so by the preceding lemma

lim
n→∞

(ĝn ∗ f)(x) = f(x)
∫
g = (2π)d/2f(x), (2.14)

and thus (F −1f̂)(x) = f(x). The proof for F (F −1f)(x) = f(x) is the same.

Proposition 2.9. The Fourier transform F is a linear and continuous map

F : S (Rd) → S (Rd), f 7→ f̂ .

Its continuous inverse is given by F −1. Moreover, the identities

(∂αFf)(p) = (F (−ix)αf)(p) (2.15)
pα
(
Ff

)
(p) = F

(
(−i)|α|∂α)f

)
(p) (2.16)

hold for all f ∈ S (Rd), α ∈ Nd0.
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2. Linear PDEs with constant coefficients and the Fourier transform

Proof. We prove that f̂ is smooth and the first identity by induction on |α|. For |α| = 0
we only need to prove that f̂ is continuous, which is Lemma 2.2.

Now assume the statement holds for all β ∈ Nd0 with |β| ≤ k and let |α| = k+ 1. Then
there are β ∈ Nd0 and j ∈ {1, . . . , d} with α = β + ej . Denote g = ∂β f̂ . By the theorem
on parameter-dependent integrals A.10 and the induction hypothesis

g(p) = 1
(2π)d/2

∫
e−ipx(−ixj)βf(x)dx (2.17)

is differentiable, with

∂pjg(p) = 1
(2π)d/2

∫
∂pj e−ipx(−ixj)βf(x)dx = 1

(2π)d/2

∫
e−ipx(−ixj)αf(x)dx. (2.18)

This completes the induction.
For the second identity, we use that

pj f̂(p) = 1
(2π)d/2

∫
pje−ipxf(x)dx = 1

(2π)d/2

∫
i∂xj e−ipxf(x)dx

= 1
(2π)d/2

∫
i∂xj (e−ipxf(x)) − ie−ipx∂xjf(x)dx. (2.19)

The integral of the derivative vanishes, because for h ∈ S by Fubini’s Theorem A.6 and
the fundamental theorem of calculus∫

∂xjh(x)dx =
∫

|xj |≤R
∂xjh(x)dx+

∫
|xj |>R

∂xjh(x)dx

=
∫
Rd−1

h(x)
∣∣∣xj=R

xj=−R
+
∫

|xj |>R
∂xjh(x)dx, (2.20)

and
lim
R→∞

∫
Rd−1

h(x)
∣∣∣xj=R

xj=−R
= 0 =

∫
|xj |>R

∂xjh(x)dx, (2.21)

since h vanishes faster than any polynomial. This proves the second identity in the case
|α| = 1, from which the general case follows by induction, like the first.

We have shown that f̂ is smooth, so to show that f̂ ∈ S we need to show that ∥f̂∥α,β
is finite. Using the identities, we find using the Leibniz rule (see Problem 4)

∥f̂∥α,β = sup
p∈Rd

∣∣∣(F∂αxβ)(p)f
∣∣∣

≤ 1
(2π)d/2

∫
(1 + x2d)−1 sup

y∈Rd

(1 + y2d)|∂αyβf(y)|

≤ C
∑

|γ|≤β+2d
|δ|≤|α|

∥f∥γ,δ (2.22)

for some constant C, and hence f̂ ∈ S . Moreover, F is continuous in f = 0 by the
bound (2.22), so it is continuous by linearity. Continuity of the inverse follows from
F −1 = RF .
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2.2. The Schwartz space S

Corollary 2.10. Let f, g ∈ S (Rd), then∫
f(x)ĝ(x) =

∫
f̂(x)g(x),

and ∫
|f̂ |2(p)dp =

∫
|f |2(x)dx.

Proof. The first statement follows directly from Fubini’s theorem. The second is a
consequence of this and the Fourier inversion formula together with F −1f(x) = f̂(−x) =
Rf and Proposition 2.1d), i.e.,∫

f̂(p)f̂(p)dp =
∫
f(x)

̂̂
f(x)dx =

∫
f(x)R̂̂̄f(x)dx =

∫
|f(x)|2dx. (2.23)

Example 2.11. Let z ∈ C, f ∈ S (Rd) and consider the linear PDE

(∆ + z)u = f. (2.24)

Assuming that u ∈ S , we can take the Fourier transform and obtain

(−p2 + z)û(p) = f̂(p). (2.25)

If z ∈ C \ R+, then −p2 + z ̸= 0, and

û(p) = (−p2 + z)−1f̂(p) ∈ S . (2.26)

In this case, the unique solution u ∈ S (Rd) to (2.24) is given by

u(x) = F −1(−p2 + z)−1f̂ . (2.27)

Uniqueness holds only with the requirement that u ∈ S . Without this hypothesis, we
can add any solution v of the homogeneous equation

(∆ + z)v = 0, (2.28)

for example v± = e±
√

−zx for d = 1, z ̸= 0. Note that these solutions are not elements
of S , as they do not decay for |x| → ∞!

If z ∈ R+ the situation is more complicated as −p2 + z is not smoothly invertible, but
if f̂ has the same zeros the solution might still be an element of S .

Example 2.12. (The heat equation on S ) If we take the Fourier transform of the heat
equation

∂tu = ∆u (2.29)

in both t and x, we obtain
(iτ + p2)Ft,xu = 0. (2.30)
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2. Linear PDEs with constant coefficients and the Fourier transform

In the best case this would tell us that u = 0 (though this is not clear since the multiplier
vanishes at (τ, p) = 0). However, the equation is an evolution equation and S (R × Rd)
is not a natural space for the solutions. Indeed, u ∈ S (R × Rd) would mean that
u(t, x) → 0 for t → ±∞, but instead of this restriction we should rather specify initial
data, as for ODEs.

If we only take the Fourier transform in x, we obtain

∂tû(t, p) = −p2û(t, p). (2.31)

If we fix an initial condition û0(p) = û(0, p) ∈ S (Rd) the equation is an ODE initial
value problem for every p. The unique solution is

û(t, p) = e−p2tû0(p), (2.32)

and for every t ≥ 0 this is again an element of S (Rd). Moreover, limt→0 e−p2tû0(p) = u0
in S (Rd).

With this we can see that there exists a unique function

(t, x) 7→ u(t, x), u ∈ C1((0,∞) × Rd,C), u(t, ·) ∈ S (Rd) (2.33)

satisfying the heat equation (2.29) and such that

lim
t→0

u(t, ·) = u0 (2.34)

in S (Rd).

2.3. Convolution and approximation
The convolution of functions appears frequently in formulas for solutions of PDEs. It is
also an important technical tool that enables us to approximate functions with singu-
larities by smooth functions.

For f, g ∈ S (Rd), we define their convolution as

(f ∗ g)(x) =
∫
f(x− y)g(y)dy. (2.35)

Note that the formula for f ∗ g remains well defined whenever f(x− y)g(y) is integrable
for every x ∈ Rd. By the Hölder inequality, Theorem A.5, this holds if f ∈ Lp(Rd),
g ∈ Lq(Rd) with p−1 + q−1 = 1. In particular, if g ∈ S (Rd), and thus in Lq for all
1 ≤ q ≤ ∞, the f ∗ g is defined for f ∈ Lp(Rd) and all 1 ≤ p ≤ ∞.

The convolution of f with g ∈ S has a smoothing effect, which we will use this to
approximate arbitrary elements of Lp(Rd) by smooth functions.

Theorem 2.13. Let 1 ≤ p ≤ ∞, f ∈ Lp(Rd) and g ∈ S (Rd). Then

a) f ∗ g ∈ C∞(Rd);
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2.3. Convolution and approximation

b) If (1 + x2)rf(x) ∈ Lp(Rd) for some r > 0, then (1 + x2)r(f ∗ g)(x) ∈ L∞(Rd);

c) If f ∈ S (Rd) then

f̂ ∗ g = (2π)d/2f̂ ĝ, f̂g = (2π)−d/2f̂ ∗ ĝ.

Proof. a): Changing variables with z = x− y we have

(f ∗ g)(x) =
∫
f(z)g(x− z)dz. (2.36)

For given x0, we consider a neighbourhood U = B(x0, 1). Since g ∈ S , the derivatives
of the integrand satisfy for x ∈ U

|∂αx f(z)g(x− z)| ≤ C|f |(z)(1 + |x0 − z|2d)−1 (2.37)

with some C > 0. The right hand side is integrable, since (1 + |x0 − z|2d)−1 ∈ Lq(Rd)
for all 1 ≤ q ≤ ∞. Thus, f ∗ g is smooth by Theorem A.10

b): We write

(1 + x2)r(f ∗ g)(x) =
∫

(1 + |x− y|2)rf(x− y)(1 + y2)rg(y)
( 1 + x2

(1 + |x− y|2)(1 + y2)

)r
dy.

(2.38)
Now

1 + x2

(1 + |x− y|2)(1 + y2) ≤ 4 (2.39)

since for |x− y| ≤ |x|/2 we have |y| ≥ |x|/2, and thus

1 + x2

(1 + |x− y|2)(1 + y2) ≤ 1 + x2

1 + x2/4 ≤ 4, (2.40)

and the same argument with reversed roles in the denominator for |x−y| ≥ |x|/2. Thus,
by Hölder’s inequality (A.7),∣∣∣∣ ∫ (1 + |x− y|2)rf(x− y)(1 + y2)rg(y)

( 1 + x2

(1 + |x− y|2)(1 + y2)

)r∣∣∣∣
≤ 4r

(∫
|(1 + |x− y|2)rf(x− y)|pdy

)1/p(∫
(1 + y2)r|g(y)|q(y)dy

)1/q
, (2.41)

which proves the claim by a change of variables in the integral involving f .
c) By b), f ∗ g ∈ L1(Rd), so the Fourier transform is well defined. Now

f̂ ∗ g = 1
(2π)d/2

∫
e−ip(x−y)−ipyf(x− y)g(y)dydx = (2π)d/2f̂(p)ĝ(p). (2.42)

To prove the second formula, apply this to f̌ = F −1f , ǧ = F −1g and use the inversion
formula to find

f̂g(p) = (2π)−d/2f̌ ∗ ǧ(−p) = (2π)−d/2
∫
f̂(p+ q)ĝ(−q)dq = (2π)−d/2f̂ ∗ ĝ. (2.43)
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2. Linear PDEs with constant coefficients and the Fourier transform

The important idea to keep in mind from this theorem is that f ∗ g inherits the
regularity of the more regular of f, g and the decay of the more slowly decaying. In
particular, S is invariant under convolution.

Corollary 2.14. For g ∈ S (Rd), the map f 7→ f ∗ g maps S (Rd) to itself and is
continuous.

Proof. The fact that f ∗ g ∈ S (Rd) follows from points a), b) of the previous theorem.
Continuity follows from its proof, namely the bounds (2.37), (2.38) which show that
∥f ∗ g∥α,β can be bounded in terms of ∥f∥γ,β for finitely many γ.

The convolution satisfies some important inequalities with respect to the norms on
the Lebesgue spaces.

Lemma 2.15. Let g ∈ S (Rd) and f ∈ Lp(Rd), 1 ≤ p ≤ ∞, then

∥f ∗ g∥p ≤ ∥f∥p∥g∥1. (2.44)

Proof. Let q = p/(1−p) and write |g(y)| = |g(y)|1/p|g(y)|1/q. Then, by Hölder’s inequal-
ity,

∫ ∣∣∣∣ ∫ f(x− y)g(y)dy
∣∣∣∣pdx ≤

∫ ∫
|f(x− y)|p|g(y)|dydx

(∫
|g(z)|dz

)p/q
= ∥f∥pp∥g∥1+p/q

1 . (2.45)

Taking the p-th root and using again 1/p+ 1/q = 1 yields the claim.

These bounds show that, for example, the map f 7→ f ∗ g for g ∈ S (Rd) is continuous
from Lp(Rd) to Lp(Rd), since it is bounded.

We will now use the convolution to approximate arbitrary elements of Lp(Rd) by
smooth functions and extend the Fourier transform and convolution maps. For this, we
first need a Lemma concerning the action of translations on Lp.

Lemma 2.16. Let Taf(x) = f(x−a) be the translation and f ∈ Lp(Rd) for 1 ≤ p < ∞.
Then

lim
a→0

∥Taf − f∥p = 0.

Proof. We start by reducing the proof to the case p = 1. For this, note that

lim
R→∞

∥χB(0,R)f − f∥p = 0 (2.46)

by Dominated Convergence, since |χB(0,R)f − f |p ≤ |f |p ∈ L1(Rd). Moreover, denoting
by AR = {x ∈ Rd : ||f(x)| ≤ R}, we also have

lim
R→∞

∥χAR
f − f∥p = 0, (2.47)
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2.3. Convolution and approximation

by the same reasoning. Hence, given ε > 0 we can find R > 0 and fR with supp fR ⊂
B(0, R) and |fR| ≤ R so that ∥fR − f∥p < ε. Since Ta is an isometry, we thus have

∥Taf − f∥p ≤ 2ε+ ∥TafR − fR∥p, (2.48)

and ∫
|fR(x− a) − fR(x)|pdx ≤ 2p−1Rp−1

∫
|fR(x− a) − fR(x)|dx, (2.49)

which is finite because fR has compact support. It is thus sufficient to prove the claim
for p = 1.

Here, we need to use the fact from integration theory that any element of L1(Rd) can
be approximated in L1(Rd) by a finite linear combination of characteristic functions on
disjoint, half open rectangles [LL, Thm.1.18], that is, for ε > 0 there is

F =
N∑
i=1

αiχAi (2.50)

with ∥F − f∥1 < ε. For any characteristic function χA of a rectangle

A = {x ∈ Rd : cj < xj ≤ dj}, (2.51)

|χ(x− a) − χ(x)| is the characteristic function of the symmetric difference of A and its
translate, whose volume is smaller than 2|a||∂A|, where |∂A| is the surface volume of A.
We thus have

∥Taf − f∥1 ≤ 2ε+ 2|a|
N∑
j=1

|αi||∂Ai|, (2.52)

which is less than 3ε if |a| is small enough. This proves the claim.

Theorem 2.17 (Approximation by smooth functions). Let g ∈ S (Rd) with
∫
g = 1

and set gn = ndg(nx). For 1 ≤ p < ∞ and f ∈ Lp(Rd), the functions fn := f ∗ gn are
smooth, and

lim
n→∞

∥fn − f∥p = 0.

Proof. Smoothness of fn is Theorem 2.13a). In order to prove the approximation in Lp,
we write

fn(x) − f(x) =
∫

(f(x− y) − f(x))gn(y)dy. (2.53)

Let ε > 0. We start by by considering the restriction of the integral to |y| < δ. We have
(cf. (2.45)),∫ ∣∣∣∣ ∫

|y|<δ
(f(x− y) − f(x))gn(y)dy

∣∣∣∣pdx ≤
∫ ∫

|y|<δ
(f(x− y) − f(x)|p|gn(y)|dydx∥g∥p−1

1

≤ ∥g∥p−1
1 sup

|y|≤δ

∫
|f(x− y) − f(x)|pdx. (2.54)

13



2. Linear PDEs with constant coefficients and the Fourier transform

By Lemma 2.16, there exists δ so that ∥Tyf − f∥p ≤ ε for |y| ≤ δ, and we choose δ in
this way. Then, we can find n0 so that for n ≥ n0∫

|y|>δ
|gn(y)| =

∫
|y|>nδ

|g(y)| ≤ ε. (2.55)

By the triangle inequality for the Lp norm, we thus have by Lemma 2.15

∥fn − f∥p ≤ ε+ 2∥f∥pε (2.56)

which proves the claim since ε was arbitrary.

Corollary 2.18. The Schwartz functions S (Rd) are dense in Lp(Rd) for 1 ≤ p < ∞.

Proof. Given f ∈ Lp and ε > 0 we need to find fε ∈ S with ∥f − fε∥p < ε. To do
this, first choose R so that ∥f − χB(0,R)f∥p < ε/2. Then, let fn,R = χB(0,R)f ∗ gn be
a smooth approximation as in Theorem 2.17. This function is also rapidly decaying by
Theorem 2.13b), since χB(0,R)f has compact support. Iterating this argument shows
fn,R ∈ S (Rd). Choosing n large enough so that ∥fn,R − χB(0,R)f∥ < ε/2 yields the
result.

Remark 2.19. The Schwartz functions are clearly not dense in L∞, since for the con-
stant function f ≡ 1, ∥f − g∥∞ = 1 for all g ∈ S , as g tends to zero for |x| → ∞.

The density of S (Rd) allows us to prove some important results on the Fourier trans-
form on Lp(Rd) by approximation.

Theorem 2.20 (Riemann-Lebesgue Lemma). The Fourier transform is a continuous
map F : L1(Rd) → C∞(Rd), where C∞(Rd) denotes the space of continuous functions
tending to zero at infinity with the topology of uniform convergence.

Proof. Continuity of f̂ was already proved in Lemma 2.2. The fact that F : L1(Rd) →
C(Rd) is continuous is then simply the inequality

∥f̂∥∞ ≤ (2π)−d/2∥f∥1. (2.57)

To see that f̂ tends to zero, let ε > 0 and take fε ∈ S (Rd) so that ∥f − fε∥ ≤ ε. Then

|f̂(x)| ≤ (2π)−d/2ε+ f̂ε(x). (2.58)

Since f̂ε ∈ S (Rd) by Proposition 2.9, it tends to zero, so there is R > 0 such that
|f̂ε(x)| ≤ ε for |x| < R, and thus |f̂(x)| ≤ ε((2π)−d/2 + 1) for |x| > R.

We can extend some of the maps we have defined of S to Lp by continuity, using the
following.

Theorem 2.21 (B.L.T. Theorem). Let X,Y be Banach spaces and D ⊂ X a dense
subspace. Suppose A : D → Y is a bounded linear transformation, then there exists a
unique bounded linear transformation A : X → Y that extends A, and ∥A∥ = ∥A∥ holds.

14



2.3. Convolution and approximation

Proof. By [FA, Prop.1.7.2], A is continuous so the idea is to extend in such a way that
preserves continuity.

Since D = X, every x ∈ X \D is a limit point of of D, i.e. there exist xn ∈ D, n ∈ N,
so that xn → x as n → ∞. The sequence xn is Cauchy in X, and because A is bounded,
we have

∥Axn −Axm∥Y ≤ ∥A∥∥xn − xm∥X , (2.59)

so the sequence Axn is Cauchy in Y . Since Y is complete, it thus converges to a limit
y ∈ Y . We set

Ax := y. (2.60)

This is well defined, for if x̃n → x is another sequence, then x̃n − xn → 0 and thus

lim
n→∞

Ax̃n = y + lim
n→∞

A(x̃n − xn) = y, (2.61)

by continuity of A. Linearity of A follows from linearity of A and the limit. This
extension is unique, for if Ã were another bounded extension, it would be continuous
by [FA, Prop.1.7.2] and Ãx = y = Ax follows.

Moreover, we have by continuity of the norm

∥Ax∥Y = ∥ lim
n→∞

Axn∥Y = lim
n→∞

∥Axn∥Y ≤ ∥A∥ lim
n→∞

∥xn∥X = ∥A∥∥x∥X , (2.62)

so ∥A∥ ≤ ∥A∥. We also have ∥A∥ ≤ ∥A∥, since in one case the supremum is over D and
in the other over X, which is larger. Thus A is bounded with ∥A∥ = ∥A∥.

We can now define the Fourier transform on L2(Rd), where it is a unitary map.

Theorem 2.22 (Fourier-Plancherel). The Fourier transform F : S (Rd) → S (Rd)
admits a unique continuous extension

F : L2(Rd) → L2(Rd).

This map is unitary, i.e.,

⟨f,Fg⟩ = ⟨Ff, g⟩, ∥f∥2 = ∥Ff∥2

for all f, g ∈ L2(Rd) and F
∗ = F

−1 = F −1.

Proof. By Corollary 2.10, F : S (Rd) → L2(Rd) defines a bounded linear map with
norm one. Since S (Rd) is dense in L2(Rd), the unique continuous extension of this
map F : L2(Rd) → L2(Rd) also has norm one. The identities of Corollary 2.10 carry
over to the extension by continuity of the scalar product and imply unitarity of the
extension.

Remark 2.23. The map F is not given by the integral formula (2.1), which does not
make sense for an arbitrary element of L2(Rd). However, for f ∈ L1∩L2(Rd) this formula
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2. Linear PDEs with constant coefficients and the Fourier transform

holds (by uniqueness of the extension). Then for any sequence (fn) ⊂ L1 ∩L2(Rd) with
fn → f in L2(Rd),

Ff(x) = lim
n→∞

1
(2π)d/2

∫
e−ipxfn(x)dx. (2.63)

For example, taking fn = χB(0,n)f ,

Ff(x) = lim
n→∞

1
(2π)d/2

∫
|x|≤n

e−ipxf(x)dx. (2.64)

Remark 2.24. The Fourier transform can be extended continuously to

F : Lp(Rd) → L
p

p−1 (Rd) (2.65)

for 1 ≤ p ≤ 2. However, this is in general not surjective, as can be seen from the case
p = 1, where the range is contained in (but not equal to) C∞(Rd).

For the convolution map, the extension yields:

Corollary 2.25. For 1 ≤ p ≤ ∞ and f ∈ Lp(Rd) the convolution map

S (Rd) → Lp(Rd), g 7→ f ∗ g

has a unique continuous extension to L1(Rd) with norm ∥f∥p. The map

Lp(Rd) × L1(Rd) → Lp(Rd), (f, g) 7→ f ∗ g

is bilinear and continuous in each argument.

Proof. This follows directly from the bound (2.44) and the BLT Theorem.

2.4. Duality and tempered distributions
We have now extended the Fourier transform to L2, but we cannot use this for solving
PDEs yet, since we most functions in L2 are not differentiable in the standard sense.
In order to overcome this, we will extend all the operations from S to a much larger
space S ′ called the tempered distributions. This space also contains L2, but not all of
its elements can be thought of as functions.

Definition 2.26. Let X be a topological vector space. Then we define the topological
dual of X by

X ′ := {φ : X → C, φ is linear and continuous}.

Example 2.27. If X is a Banach (i.e., normed, complete) space, then X ′ = B(X,C) is
also a Banach space, with the norm

∥φ∥X′ = sup
0̸=x∈X

|φ(x)|
∥x∥

. (2.66)
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2.4. Duality and tempered distributions

Example 2.28. If X = H is a Hilbert space, then H′ and be indetified with H via the
(anti-linear) isomorphism (cf. [FA, Thm.2.4.1])

Φ : H → H′, Φ(f)(g) 7→ ⟨f, g⟩H. (2.67)

Definition 2.29. Let X be a topological vector space. The weak topology on X ′ is the
smallest topology so that for every x ∈ X the evaluation

ιx : X ′ → C, ιxφ = φ(x) (2.68)

is continuous. A sequence (φn)n∈N ⊂ X ′ converges weakly to φ if

∀x ∈ X : lim
n→∞

φn(x) = φ(x). (2.69)

Definition 2.30. The space of tempered distributions is S ′(Rd) := (S (Rd))′ equipped
with the weak topology.

Remark 2.31. Since φ ∈ S ′(Rd) is linear, continuity is equivalent to continuity in
f = 0, since if fn → f in S , then fn − f → 0, and

lim
n→∞

φ(fn) = φ(f) ⇔ lim
n→∞

|φ(fn) − φ(f)| = lim
n→∞

|φ(fn − f)| = 0. (2.70)

Question 2.32. Which of the following formulas define a tempered distribution on R?

1. f 7→ f ′(0),

2. f 7→
∫
f2(x)dx,

3. f 7→
∫
e

√
1+x2

f(x)dx,

4. f 7→
∫

|x|f(x)dx.

Example 2.33. Let g ∈ Lp(Rd), p ≤ ∞ then

f 7→ φg(f) =
∫
Rd
g(x)f(x)dx (2.71)

defines an element of S ′(Rd). It is clearly linear, and if fn → 0 in S , then by Hölder’s
inequality

|φg(fn)| ≤ C∥g∥p
∑

|α|≤2d
∥fn∥α,0 → 0, (2.72)

so φg is continuous.

Many other classes of functions can be identified with tempered distributions by this
formula.

Definition 2.34. A distribution φ ∈ S ′(Rd) is called a regular distribution if there
exists g ∈ L1

loc(Rd) (i.e., χB(0,R)g ∈ L1 for all R > 0) such that φ = φg, that is

∀f ∈ S (Rd) : φ(f) =
∫
Rd
g(x)f(x)dx. (2.73)
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2. Linear PDEs with constant coefficients and the Fourier transform

Proposition 2.35. Let φ = φg be a regular distribution, then g is unique. That is, if
h ∈ L1

loc(Rd) is such that φ = φh, then h = g almost everywhere.

Proof. We have to show that

∀ ∈ S (Rd) :
∫
g(x)f(x)dx =

∫
h(x)f(x)dx =⇒ g = h a.e.. (2.74)

By additivity in in g, h we may consider η = g − h and show that φη = 0 implies η = 0
a.e.. By choosing f of compact support, we may assume that η ∈ L1, without loss of
generality. Now let gn(x) = nde−n2x2/2 ∈ S (Rd). By hypothesis, for every x ∈ Rd

gn ∗ η(x) =
∫
η(y)gn(x− y)dy = φη(gn(x− ·)) = 0. (2.75)

On the other hand, by Theorem 2.17, gn ∗ η converges to η in L1, so η = 0 in L1 and
thus almost everywhere.

We can extend many (linear) operations on S to S ′ by duality, i.e. taking the
transpose.

Proposition 2.36. Let X,Y be topological vector spaces and T : X → Y a linear,
continuous map. Then there exists a unique weakly continuous map T ′ : Y ′ → X ′

satisfying
(T ′φ)(x) = φ(Tx).

Proof. The formula defines a unique map since φ ∈ X ′ is completely determined by its
evaluations. This map is linear, since

T ′(aφ+ ψ)(x) = (aφ+ ψ)(Tx) = aφ(Tx) + ψ(Tx) = aT ′φ(x) + T ′ψ(x). (2.76)

It is weakly (sequentially) continuous since

lim
n→∞

T ′φn(x) = lim
n→∞

φn(Tx) = φ(Tx) = T ′φ(x) (2.77)

for any weakly convergent sequence φn w→ φ.

Examples 2.37.

a) Fourier transform F . For g ∈ S (Rd) we have

((F −1)′φg)(f) = φg(F −1f) =
∫
g(x)(F −1f)(x)dx Parseval=

∫
ĝ(p)f(p)dp = φĝ(f),

(2.78)
so the action of (F −1)′ on S ′ extends the one of F on S . We will also denote this
by

(F −1)′φ = Fφ =: φ̂. (2.79)
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2.4. Duality and tempered distributions

b) Derivative: For any α ∈ Nd we have (∂α)′ : S ′(Rd) → S ′(Rd) linear and continuous.
In this way we can define derivatives of all tempered distributions, in particular all
L2-functions.

c) Multiplication by a monomial: In this case we have (xα)′φg = φxαg =: xαφg.

d) Convolution with a Schwartz function. For fixed g ∈ S (Rd), the map

f 7→ g ∗ f (2.80)

is linear and continuous on S (Rd). It thus extends to S ′(Rd). For suitable h, the
formula

(g∗)′φh(f) = φh(g ∗ f) =
∫
h(x)

∫
g(x− y)f(y)dydx = φh∗Cg(f) (2.81)

holds with Cg(x) := g(−x). We thus define the convolution of g with φ ∈ S ′(Rd) as

g ∗S ′ φ := (Cg∗)′φ(f). (2.82)

Definition 2.38. Let α ∈ Nd. The α-th distributional derivative on S ′(Rd) is defined
as (∂α)S ′ := (−1)|α|(∂α)′.

Remark 2.39. The definition of (∂α)S ′ ensures that its action is compatible with the
usual derivative and integration by parts: For g ∈ S (Rd)

((∂α)S ′φg) (f) =
∫
g(x)(−1)|α|∂αx f(x)dx =

∫
(∂αx g) (x)f(x)dx = φ∂αg(f). (2.83)

For this reason we will not distinguish (∂α)S ′ from the usual derivative by the notation.
The distributional derivative is a local operation: Let φ ∈ S ′ have support in the open
set Ω ⊂ Rd (i.e.: supp f ⊂ Ωc =⇒ φ(f) = 0), then supp ∂αφ ⊂ Ω.

Also note that

(F∂αφ)(f) = φ
(
(−1)|α|∂αF −1f

)
= φ

(
F −1(−i)|α|pαf

)
=
(
(−i)|α|pαFφ

)
(f),

(2.84)

where multiplication by pα is defined as M ′
pα and in the last step, we used linearity of

f 7→ φ(f). Since g 7→ φg is anti-linear, this means

φ(ip)αĝ = (−ip)αφĝ = ∂̂αφg = φ
∂̂αg

, (2.85)

which is consistent with the formula from Proposition 2.9.
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2. Linear PDEs with constant coefficients and the Fourier transform

2.5. Elliptic PDEs and Sobolev spaces
We can now solve equations such as

(∆ + z)u = f

even with f ∈ S ′ by the Fourier transform method (cf. Example 2.11). However, at
first we only know that the solution u is an element of S ′. We do not, for instance, have
a criterion that tells us if u ∈ Ck and we have found a classical solution.

It is thus important to investigate further these (distributional) solutions. For a special
class of constant coefficient linear PDEs, called elliptic this can be done quite easily and
the regularity of solutions is described precisely by the Sobolev spaces.

Definition 2.40. Let
P =

∑
|α|≤k

aα∂
α (2.86)

be a constant-coefficient differential operator of order k. The symbol of P is the function

σP (p) :=
∑

|α|≤k
aα(ip)α.

Since
FPu = σPFu, (2.87)

we can solve PDEs as in Example 2.11 if σP is invertible for every k. However, the regu-
larity can still be difficult to analyse. The following condition simplifies this enormously:

Definition 2.41. A constant-coefficient differential operator of order k is called uni-
formly elliptic if there exists c > 0 so that for all p ∈ Rd∑

|α|=k
aα(ip)α ≥ c|p|k. (2.88)

We note that this can only hold if k = 2m is even, and only concerns the terms of the
highest order in P . The terminology comes from the second order case, where the the
condition means that the level sets of σP are ellipses.

We will now focus on the simplest elliptic operator P = −∆, σP (p) = −(ip)2 = p2.
With some care, results for the general case can be obtained by the same arguments.
Our goal is to show that if u is a solution to

−∆u = f (2.89)

and f ∈ Cm, then u ∈ Cn for an appropriate n (which will depend on the dimension).
Since our method relies on the Fourier transform and this is naturally defined in S ,

S ′ and not Cm, we first need to study subspaces of S ′ that classify the regularity of
distributions.
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Definition 2.42. Let s ∈ R. The Sobolev space of order s is the space

Hs(Rd) :=
{
φ ∈ S ′(Rd) : φ̂ is regular, and (1 + | · |2)s/2φ̂ ∈ L2(Rd)

}
(2.90)

with the norm
∥φ∥Hs =

∥∥∥(1 + | · |2)s/2φ̂
∥∥∥
L2
. (2.91)

Proposition 2.43.

a) We have Hs(Rd) ⊂ Ht(Rd) for s ≥ t, and in particular Hs(Rd) ⊂ L2(Rd) for all
s ≥ 0.

b) If s ∈ N is a non-negative integer, then f ∈ Hs(Rd) if and only if f ∈ L2(Rd) and
∂αf ∈ L2(Rd) for all |α| ≤ s.

Proof. a): Let s ≥ t. Then
(1 + p2)t
(1 + p2)s ≤ C (2.92)

for some C > 0. Thus for f ∈ Hs we have (1 + p2)t/2f̂ ∈ L2, because∫
(1 + p2)t|f̂(p)|2dp =

∫ (1 + p2)t
(1 + p2)s (1 + p2)s|f̂(p)|2dp

≤ C

∫
(1 + p2)s|f̂(p)|2dp = C∥f∥2

Hs . (2.93)

Hence f ∈ Ht and thus Hs ⊂ Ht. As H0 = L2 by definition this proves a).
b): Let first f ∈ Hm(Rd), m ∈ N. Then f ∈ L2 by a) and we have for the derivative

in S ′

∂αf = F −1(ip)αf̂ . (2.94)

By Plancherel’s Theorem it is thus enough to show that (ip)αf̂ ∈ L2 for |α| ≤ m. This
now follows from the inequalities∣∣∣(i)|α|pα1

1 · · · pαd
d f̂(p)

∣∣∣2 ≤ |p|2|α||f(p)|2 ≤ (1 + p2)|α||f(p)|2 ≤ (1 + p2)m|f(p)|2. (2.95)

For the reverse implication, we have by Plancherel that (ip)αf̂ for all |α| ≤ m and
thus p2α |̂f(p)|2 ∈ L1. Now

p2m = (p2
1 + · · · + p2

d)m =
∑

|α|=m

m!
α! p

2α (2.96)

by the multinomial theorem, so p2m|f̂(p)|2 ∈ L1. This implies that (1 + p2)m/2f̂ ∈ L2

because (1 + p2m)/(1 + p2)m is bounded, by the argument of (2.93)
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2. Linear PDEs with constant coefficients and the Fourier transform

Theorem 2.44. For any z ∈ C \ [0,∞) and φ ∈ S ′(Rd) there exists a unique solution
u ∈ S ′(Rd) to the equation

(∆ + z)u = φ.

Moreover, if φ ∈ Hs(Rd) for some s ∈ R then u ∈ Hs+2(Rd).

Proof. Existence: Since z is not a non-negative real number, z−p2 ̸= 0, and (z−p2)−1 is
smooth, with bounded derivatives. Hence for f ∈ S (Rd), we have (z− p2)−1f ∈ S (Rd)
and

û(f) := φ̂((z − p2)−1f) (2.97)
defines an element of S ′(Rd). Setting u = F −1û, we have for every f ∈ S

[(∆ + z)u](f) = u((∆ + z)f) = û(F (∆ + z)f) = û((z− p2)f̂) (2.97)= φ̂(f̂) = φ(f). (2.98)

This means that (∆ + z)u = φ.
Uniqueness: Let u, v ∈ S ′ be two, possibly different, solutions. Then for all f ∈ S

û((z − p2)f) − v̂((z − p2)f) = φ̂(f̂) − φ̂(f̂) = 0. (2.99)

Since f 7→ (z − p2)f̂ is a bijection on S (Rd) this implies that û = v̂, and since the
Fourier transform is injective u = v.

Regularity: Assume that φ ∈ Hs(Rd), i.e., (1 + p2)s/2φ̂ ∈ L2(Rd). First, note that
φ̂ is represented by a measureable function g, i.e.,

φ̂(f) =
∫
g(p)f(p)dp. (2.100)

Thus û is represented by the function p 7→ (z − p2)−1g(p) and u ∈ Hs(Rd), since

(1 + p2)s/2|û(p)| = (1 + p2)s/2
∣∣∣ g(p)
z̄ − p2

∣∣∣ ≤ C(1 + p2)s/2|g(p)| ∈ L2(Rd). (2.101)

Then

(1 + p2)s/2+1û = (1 + p2)s/2(1 + p2)û
= (1 + p2)s/2(1 + z)û− (1 + p2)s/2φ̂ ∈ L2(Rd), (2.102)

so u ∈ Hs+2. This proves the claim.

Remark 2.45. We have shown that the linear map u 7→ (∆ + z)u from Hs+2(Rd) to
Hs(Rd) is invertible – the inverse in the point φ is given by taking the solution to the
equation above.

The link to spaces of differentiable functions is given by the following theorem.

Theorem 2.46 (Sobolev’s Lemma). Let f ∈ Hs(Rd) with s > d/2. Then f is continuous
and for all m < s − d/2 we have f ∈ Cm(Rd). Moreover, for s > d/2 and |α| ≤ m <
s− d/2 there exists a constant so that for all f ∈ Hs(Rd)

∥∂αx f∥∞ ≤ C∥f∥Hs .
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2.5. Elliptic PDEs and Sobolev spaces

Proof. We first show that f ∈ Hs(Rd), s > d/2 is continuous. By Lemma 2.2, it is
sufficient to show that f̂ ∈ L1. This follows from the Cauchy-Schwarz inequality by
∫

|f̂(p)|dp =
∫

(1 + p2)−s/2(1 + p2)s/2|f̂(p)|dp ≤ ∥f∥Hs

(∫
(1 + p2)−sdp

)1/2
, (2.103)

where the final integral is finite because 2s > d. Now let m < s − d/2 and |α| ≤ m.
Then (ip)αf̂ ∈ L1, since

∫
|(ip)αf̂(p)|dp ≤

∫
(1 + p2)m/2|f̂(p)| ≤ ∥f∥Hs

(∫
(1 + p2)−s+mdp

)1/2
. (2.104)

Hence the distributional derivative ∂αf ∈ S ′ is a continuous function. It remains to
show that this equals the usual derivative. We show this for a derivative of order one,
the general case follows by repetition of the same argument. Let ℓ ∈ {1, . . . , d} and let
g := F −1ipℓf̂ denote the distributional derivative in direction xℓ. Then by the Fourier
inversion formula

f(x+ εeℓ) − f(x) − εg(x)
ε

= 1
(2π)d/2

∫ eixp+iεpℓ − eixp − iεpℓeipx

ε
f̂(p)dp. (2.105)

This converges to zero as ε → 0 by the dominated convergence theorem, since by the
mean-value theorem ∣∣∣eixp+iεpℓ − eixp − iεpℓeipx

ε
f̂(p)

∣∣∣ ≤ 2|pℓ||f̂(p)|, (2.106)

where the right hand side is in L1(Rd) and independent of ε. This proves that g = ∂xℓ
f ,

which gives the claim.

We can now prove our first regularity result that applies, in particular, to the solutions
obtained in Theorem 2.44.

Corollary 2.47. Let s ∈ R and u ∈ Hs(Rd). If −∆u = f ∈ Ht(Rd) for some t ≥ s− 2,
then u ∈ Ht+2(Rd). If m < t+ 2 − d/2 is a non-negative integer then also u ∈ Cm(Rd).

Proof. Let t1 = min{s, t}. Since u ∈ Hs, −∆u ∈ Ht1 , we have

(1 + p2)t1/2û(p)︸ ︷︷ ︸
∈L2 since t1≤s

+ p2(1 + p2)t1/2û(p)︸ ︷︷ ︸
∈L2 since t1≤t

= (1 + p2)t1/2+1û(p) ∈ L2(Rd), (2.107)

so u ∈ Ht1+2(Rd). If t1 = t (i.e., t ≤ s) this proves the claim. Otherwise, we apply the
same argument with s′ = t1 +2 and conclude that u ∈ Ht2+2(Rd) with t2 = min{t, s+2}.
We repeat this until tn = min{t, s+ 2(n− 1)} = t, and this proves the claim.

The second part u ∈ Cm follows from Sobolev’s Lemma.
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3. Equations with variable coefficients
In the previous chapter we were already able to solve some PDEs, but we were restricted
to PDEs with constant coefficients. This restriction allowed us solve the equation using
the Fourier transform, which essentially reduces the problem to the calculation of explicit
integrals. Of course, in general one cannot hope to solve all PDEs in such an explicit
way. For example, the stationary Schrödinger equation

−∆u(x) + V (x)u(x) = λu(x) (3.1)

and the time-dependent Schrödinger equation

i∂tu(t, x) = −∆u(x) + V (x)u(x) (3.2)

do not have constant coefficients if the potential V (x) is not constant.

3.1. Linear equations on Hilbert spaces
In this section we will develop general methods for treating linear equations of the form

Au = f (3.3)

where u ∈ X for an appropriate vector space X (e.g., C∞(Rd), S (Rd), Hs(Rd)), and A
is linear.

In most cases we will only consider Hilbert spaces, which additionally have a scalar
product.

Definition 3.1. A (complex) Hilbert space H is a vector space with a scalar product
(a positive definite sesquilinear form), such that H with the norm ∥f∥ :=

√
⟨f, f⟩ is

complete (i.e. a Banach space).

Example 3.2. For s ∈ R the Sobolev space Hs(Rd) is a Hilbert space with the scalar
product

⟨f, g⟩Hs =
∫

(1 + p2)sf̂(p)ĝ(p)dp.

Definition 3.3. An orthonormal system (ONS) in H is a family {ei, i ∈ I} ⊂ H, such
that

⟨ei, ej⟩ =
{

1 i = j

0 i ̸= j.

An orthonormal system is called complete (or an orthonormal Hilbert basis) if for every
f ∈ H

f =
∑
i∈I

⟨ei, f⟩ei. (3.4)
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3.1. Linear equations on Hilbert spaces

A Hilbert space is called separable if there exists a countable complete ONS in H. In
the following we will only consider separable Hilbert spaces.

Example 3.4. The Sobolev spaces Hs(Rd) are separable. A complete ONS can be given
as follows. First, choose a complete ONS in L2(Rd), for example the Hermite functions
(here in d = 1)

en(x) := cnHn(x)e− 1
2x

2
, (3.5)

where Hn(x) are the Hermite polynomials, cn normalizing constants, and n ∈ N0. A
complete ONS of Hs(Rd) is then given by en,s(x) := F −1(1 + p2)−s/2ên(p).

Remark 3.5. Note that separability does not mean that the vector-space dimension
of H is countable (that would require the linear combination to be finite). In fact,
the vector space dimension of a Hilbert space is either finite or uncountable by Baire’s
theorem.

Compactness is very important for solving equations by approximation or fixed-point
methods. However, for infinite-dimensional Hilbert spaces we face the following problem:

Proposition 3.6. Let B := B(f, r) be a closed ball in a Hilbert space H. Then B is
compact if and only if H is finite-dimensional.

Proof. Since translation by f and scaling by r−1 is a homeomorphism, it is sufficient to
prove the statement for B := B(0, 1).

If H has dimension d < ∞, then the unit ball is compact because (after choosing an
orthonormal basis) it is a closed and bounded subset of Cd.

Assume now that the dimension of H is infinite and let f1 ∈ H be any vector with
∥f1∥ = 1. Then F1 := span{f1} is a one-dimensional closed subspace of H, and H =
F ⊕ F⊥ [FA, Thm.2.3.2]. Since dim H = ∞, dim (F⊥) = dimH − 1 = ∞, and we can
choose f2 ∈ F⊥

1 with ∥f2∥ = 1. Continuing in this way, we find a sequence of vectors fn,
n ∈ N satisfying ∥fn∥ = 1 and ⟨fn, fm⟩ = 0 for n ̸= m. We thus have for all n,m ∈ N

∥fn − fm∥2 = ∥fn∥2 − ∥fm∥2 + 2Re⟨fn, fm⟩ = 2, (3.6)

so this sequence cannot contain a convergent subsequence.

Instead of the standard topology, we will thus sometimes need to consider other, more
convenient topologies. In particular, we will use ther weak topology, which is particularly
simple on Hilbert spaces. Recall from Functional Analysis [FA, Thm.2.4.1].

Theorem 3.7 (Riesz Representation Theorem). Let H be a complex Hilbert space and
φ ∈ H′ a continuous linear functional on H. There exists a unique f ∈ H so that for all
g ∈ H

φ(g) = ⟨f, g⟩.

The map
Φ : H → H′, f 7→ ⟨f, ·⟩

is an anti-linear isometric isomorphism.
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3. Equations with variable coefficients

Consequently, weak convergence in a Hilbert space has the following simple charac-
terisation.

Corollary 3.8. Let H be a Hilbert space and fn ∈ H, n ∈ N be a sequence. Then fn
converges weakly to f ∈ H if and only

∀g ∈ H : lim
n→∞

⟨fn, g⟩ = ⟨f, g⟩.

Proof. By defintion, weak convergence means that φ(fn) → f for all φ ∈ H′, but by
Riesz’ Theorem φ(fn) = ⟨g, fn⟩ for a unique g ∈ H.

Riesz’ Theorem also has important consequences for tempered distributions, which are
defined as linear functionals. For example, we can show that (Hs)′ is naturally identified
with H−s.

Corollary 3.9. Let φ ∈ S ′(Rd), s ∈ R and assume that there exists a constant C ≥ 0
so that for all f ∈ S (Rd)

|φ(f)| ≤ C∥f∥Hs .

Then there exists h ∈ H−s(Rd) so that

φ(f) =
∫
ĥ(p)f̂(p)dp.

Proof. By the assumed inequality, the linear map φ : S → C is bounded with respect
to the Hs-norm. Since S is dense in Hs (Problem 29), we can thus extend φ uniquely
to a continuous linear functional on Hs(Rd) by the B.L.T Theorem. By the Riesz
Representation Theorem, there exists g ∈ Hs(Rd) so that

φ(f) =
∫

(1 + p2)sg(p)f̂(p)dp =
∫
ĥ(p)f̂(p)dp (3.7)

with ĥ(p) := (1 + p2)sĝ(p), which is clearly an element of H−s(Rd).

Example 3.10. Let en, n ∈ N be an ONS in H. Then en converges to zero weakly as
n → ∞. Indeed, for any g ∈ H we have the Bessel inequality

∞∑
n=1

|⟨g, en⟩|2 ≤ ∥g∥2, (3.8)

so ⟨g, en⟩ converges to zero.

As seen above, there are bounded sequences in Hs(Rd) that do not have convergent
subsequences. However, with the notion of weak convergence we can still find some sort
of limit.

Theorem 3.11. Let H be a separable Hilbert space. Any bounded sequence fn ∈ H,
n ∈ N, has a weakly convergent subsequence.
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3.1. Linear equations on Hilbert spaces

Proof. Let en, n ∈ N, be a complete ONS in H. For every n, the sequence k 7→ ⟨en, fk⟩
is a bounded sequence in C (and thus has a convergent subsequence), since

|⟨en, fk⟩| ≤ ∥fk∥ ≤ sup
k

∥fk∥ < ∞. (3.9)

We will extract a joint convergent subsequence by a diagonal argument. Start with n = 1
by extracting a convergent subsequence, i.e., an infinite subset S1 ⊂ N with

lim
k→∞
k∈S1

⟨e1, fk⟩ = c1 ∈ C. (3.10)

The sequence ⟨e2, fk⟩, k ∈ S1, is obviously bounded, so we can again extract a convergent
subsequence S2 ⊂ S1 ⊂ N. By repeating this argument, we obtain infinite sets Sj , j ∈ N
with Sj ⊂ Sℓ if j > ℓ.

Now let kj be the j-th element of Sj (i.e., k1 is the smallest element of S1, k2 the
second of S2, etc.). Then we have

lim
j→∞

kj = ∞ (3.11)

kj ∈
⋂
ℓ≤j

Sℓ. (3.12)

Consequently for all n ∈ N
lim
j→∞

⟨en, fkj
⟩ = cn, (3.13)

because kj ∈ Sn for j ≥ n.
We now claim that fkj

converges weakly to

f :=
∞∑
n=1

cnen. (3.14)

First note that, by Fatou’s Lemma and Parseval’s identity
∞∑
n=1

|cn|2 ≤ liminfj→∞

∞∑
n=1

|⟨en, fkj
⟩|2 = liminfj→∞∥fkj

∥2 ≤ sup
k

∥fk∥2 < ∞. (3.15)

Hence (cn)n∈N ∈ ℓ2(N) and f ∈ H by Parseval’s identity. Now for any g ∈ H and N ∈ N

|⟨g, fkj
− f⟩| ≤

∞∑
n=1

|⟨g, en⟩||⟨en, fkj
− f⟩|

≤
N∑
n=1

|⟨g, en⟩||⟨en, fkj
− f⟩| +

( ∞∑
n=N+1

|⟨g, en⟩|2
)1/2

∥fkj
− f∥

≤
N∑
n=1

|⟨g, en⟩||⟨en, fkj
− f⟩| +

( ∞∑
n=N+1

|⟨g, en⟩|2
)1/2

2 sup
k

∥fk∥. (3.16)
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3. Equations with variable coefficients

Let ε > 0. Then, since ⟨g, en⟩ ∈ ℓ2 and thus

lim
N→∞

∞∑
n=N+1

|⟨g, en⟩|2 = lim
N→∞

(
∥g∥2 −

N∑
n=1

|⟨g, en⟩|2
)

= 0, (3.17)

we can choose N(ε) so that the second term is less than ε/2. The first term is then a
finite sum of sequences that all converge to zero as j → ∞, so we can make it smaller
than ε/2 by choosing j ≥ j0(N, ε) large enough. This proves the claim.

We will now turn our focus to the operators B(H) on a separable complex Hilbert
space H.

Recall from [FA, Prop.3.1.9] that the adjoint A∗ of A ∈ B(H) is the unique operator
defined by the relation

∀f, g ∈ H : ⟨f,Ag⟩ = ⟨A∗f, g⟩. (3.18)

The following definition generalises well-known notions for matrices to B(H).

Definition 3.12. Let A ∈ B(H).

a) A is called self-adjoint if A∗ = A;

b) A is called unitary if A∗A = 1 = AA∗;

c) A is called normal if A∗A = AA∗.

Question 3.13. Which of the following operators are normal and/or self-adjoint, uni-
tary?

a) Mgf = gf with g ∈ L∞(Rd) on L2(Rd);

b) Tvf = f(· + v) with v ∈ Rd on L2(Rd);

c) Ttf = f(· + t) with t > 0 on L2(R+).

Example 3.14. Let f ∈ L2(Rd) and u(t, x) be the solution of the heat equation (cf.
Problem 16) {

∂tu(t, x) = ∆u(t, x), (t, x) ∈ (0,∞) × Rd

u(0, x) = f(x).

Then Ttf := u(t, ·), t ≥ 0, is self-adjoint (and hence normal) on L2(Rd), but not unitary
for t > 0. To see this, write for t > 0

u(t, x) =
∫
Rd
Et(x− y)f(y)dy = 1

(4πt)d/2

∫
Rd

e−|x−y|2/(4t)f(y)dy. (3.19)

Then, because E(t, x− y) is real and symmetric under exchange of x, y, we have

⟨g,Et ∗ f⟩ = 1
(4πt)d/2

∫
Rd
g(x)

∫
Rd

e−|x−y|2/(4t)f(y)dydx = ⟨Et ∗ g, f⟩, (3.20)
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3.2. An elliptic equation with variable coefficients

so T ∗
t = Tt. We have

T ∗
t Tt = T 2

t = T2t (3.21)

because u(t + s) solves the heat equation with u(t + 0) = u(t). Now T2t ̸= 1 for t > 0
so Tt is not unitary. We also have ∥Ttf∥ ≤ ∥f∥ hence we say that Tt is a contraction
(in fact, the inequality is strict because λ = 1 is not an eigenvalue of Tt, but the bound
cannot be improved uniformly in f).

3.2. An elliptic equation with variable coefficients
As an application of our results we can now study the elliptic equation

− divM(x)∇u(x) + λu(x) = f(x) (3.22)

for a non-trivial coefficients matrix M . We assume that M is uniformly elliptic, that is,
there exists a > 0 so that for all x ∈ Rd, v ∈ Cd

⟨v,M(x)v⟩Cd ≥ a∥v∥2. (3.23)

Instead of studying the equation (3.22) directly, we will first consider its weak form.
Assume that f ∈ L2(Rd), λ ∈ R, and u ∈ L2(Rd) solves (3.22). Then for all φ ∈ S (Rd)
we have

⟨f, φ⟩L2(Rd) = ⟨− divM(x)∇u+ λu, φ⟩L2

=
∫

⟨M(x)∇u(x),∇φ(x)⟩Cddx+ λ⟨u, φ⟩L2

= ⟨M(x)∇u(x),∇φ(x)⟩L2(Rd,Cd) + λ⟨u, φ⟩L2(Rd). (3.24)

If M is bounded, the latter expression is well defined for u, φ ∈ H1(Rd). We thus call
u ∈ H1(Rd) a weak solution to (3.22) if

∀φ ∈ H1(Rd) : ⟨M∇u,∇φ⟩L2(Rd,Cd) + λ⟨u, φ⟩L2(Rd) = ⟨f, φ⟩L2(Rd). (3.25)

Theorem 3.15. Let M ∈ L∞(Rd,B(Cd)) be uniformly elliptic. Then for every λ > 0
and f ∈ L2(Rd) there exists a unique solution u ∈ H1(Rd) to (3.25).

Proof. For f, g ∈ H1(Rd) denote

≪ f, g ≫:= λ⟨f, g⟩L2(Rd) + ⟨M∇f,∇g⟩L2(Rd,Cd). (3.26)

This is a scalar product on H1(Rd). By ellipticity of M , we have

≪ f, f ≫= λ∥f∥2
L2 +

∫
⟨M(x)∇f(x),∇f(x)⟩︸ ︷︷ ︸

≥a∥∇f(x)∥2

≥ λ∥f∥2
L2 + a∥∇f∥2

L2 ≥ min{a, λ}∥f∥2
H1 .

(3.27)
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3. Equations with variable coefficients

On the other hand, by boundedness of M ,

≪ f, f ≫≤ λ∥f∥2
L2 + ∥M∥L∞∥∇f∥2

L2 ≤ max{λ, ∥M∥∞}∥f∥2
H1 . (3.28)

The norm induced by ≪ f, g ≫ is thus equivalent to the H1-norm, so H1 equipped with
this scalar product is complete, i.e. a Hilbert space.

The right hand side of the equation satisfies

|⟨f, φ⟩| ≤ ∥f∥L2∥φ∥L2 ≤ ∥f∥L2∥φ∥H1 . (3.29)

The map φ 7→ ⟨f, φ⟩ is thus a continuous linear functional on H1(Rd). By the Riesz
Representation Theorem there exists a unique u ∈ H1(Rd) so that

⟨f, φ⟩ =≪ u, φ ≫, (3.30)

i.e, u is the unique solution to (3.25).

We want to establish that, when the coefficient matrix M is sufficiently regular, the
weak solution obtained in this theorem is an element of H2(Rd) and solves the equa-
tion (3.22) in the sense of equality in L2(Rd).

To this end, we need the following Lemma on the difference quotients.

Lemma 3.16. Define for 0 ̸= h ∈ Rd an operator Dh ∈ B(L2(Rd)) by

(Dhf)(x) = f(x+ h) − f(x)
|h|

.

a) If f ∈ H1(Rd), then for all h ∈ Rd: ∥Dhf∥ ≤ ∥∇f∥.

b) If f ∈ L2(Rd) and sup0̸=h∈Rd ∥Dhf∥ < ∞, then f ∈ H1(Rd).

Proof. a) Assume first that f ∈ S (Rd). Then by the fundamental theorem of calculus

|Dhf(x)| =
∣∣∣∣ 1
|h|

∫ 1

0
h · ∇f(x+ th)dt

∣∣∣∣ ≤
∫ 1

0
|∇f(x+ th)|dt. (3.31)

Thus by Cauchy-Schwarz

∥Dhf∥2 ≤
∫ 1

0

∫ 1

0

∫
Rd

|∇f(x+ th)||∇f(x+ sh)|dxdtds ≤ ∥∇f∥2. (3.32)

Since S is dense in H1(Rd), the bounded linear maps Dh : S → L2 can be extended to
H1(Rd) with the same norm, so the inequality still holds for f ∈ H1(Rd). This proves
a).

b) Let i ∈ {1, . . . , d}, n ∈ N and set hn = n−1ei. By hypothesis, the sequence Dhnf
is bounded in L2(Rd). Hence by Theorem 3.11 it has a weakly convergent subsequence,
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3.2. An elliptic equation with variable coefficients

which we denote by the same symbols. Let g ∈ L2(Rd) denote the weak limit and let
φ ∈ S (Rd) ⊂ L2(Rd). Then by a change of variables and dominated convergence

⟨φ, g⟩ = lim
n→∞

⟨φ,Dhnf⟩

= lim
n→∞

n

∫
φ(x)(f(x+ n−1ei) − f(x))dx

= lim
n→∞

∫
n(φ(x− n−1en) − φ(x))f(x)dx

=
∫

−(∂iφ(x))f(x)dx. (3.33)

Hence g coincides with ∂if in S ′(Rd), whence ∂if ∈ L2(Rd). In view of Proposition 2.43
this shows that f ∈ H1(Rd).

Theorem 3.17. Assume the hypothesis of Theorem 3.15 and additionally that M ∈
C1(Rd,B(Cd)) and that ∇M is bounded. Let u be the weak solution to (3.25), then
u ∈ H2(Rd) and (3.22) holds in L2(Rd).

Proof. The idea is to take the derivative of the equation, but since we do not know a
priori that this makes sense, we rather consider difference quotients Dh as above.

We know that u ∈ H1(Rd), so we may take φ = D−hDhu in (3.25). Note that we have
the following identities:

D∗
−h = Dh (3.34)

∇Dhf = Dh∇f (3.35)
Dh(fg) = (τhf)Dhg + gDhf, (3.36)

where τhf(x) = f(x+ h). With this, we find from (3.25)

⟨f,D−hDhu⟩ = ⟨DhM∇u,Dh∇u⟩ + λ⟨u,D−hDhu⟩
= ⟨(τhM)Dh∇u,Dh∇u⟩ + ⟨(DhM)∇u,Dh∇u⟩ + λ⟨u,D−hDhu⟩. (3.37)

Using that M is elliptic, we obtain from this and Lemma 3.16

a∥Dh∇u∥2 ≤ ⟨(τhM)Dh∇u,Dh∇u⟩
(3.37)

≤ |⟨f,D−hDhu⟩| + |⟨(DhM)∇u,Dh∇u⟩| + λ∥u∥∥D−hDhu∥
≤ (∥f∥ + λ∥u∥)∥∇Dhu∥ + ∥DhM∥L∞∥∇u∥∥Dh∇u∥. (3.38)

Now we have

∥DhM∥L∞ =
∥∥∥∥ ∫ 1

0

h

|h|
∇M(x+ th)dt

∥∥∥∥
L∞

≤ ∥∇M∥L∞ , (3.39)

so dividing (3.38) by ∥∇Dhu∥ yields

a∥Dh∇u∥ ≤ ∥f∥ + λ∥u∥ + ∥∇M∥L∞∥∇u∥. (3.40)
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3. Equations with variable coefficients

By Lemma 3.16 this proves that ∇u ∈ H1(Rd,Cd), so, by Proposition 2.43, u ∈ H2(Rd).
By Exercise 33 we thus have M∇u ∈ H1(Rd,Cd), and obtain from the weak form of

the equation (3.25)

⟨f, φ⟩ = ⟨M∇u,∇φ⟩ + λ⟨u, φ⟩ (3.41)
= ⟨− divM∇u+ λu, φ⟩ (3.42)

for all φ ∈ H1(Rd). Since the latter is dense in L2(Rd) this implies that

f + divM∇u+ λu ∈ (H1(Rd))⊥ = {0}, (3.43)

that is, equation (3.22) holds.

Remark 3.18. If the coefficients M have k + 1 bounded derivatives and f ∈ Hk(Rd)
we can iterate the reasoning of Theorem 3.17 and obtain u ∈ Hk+2(Rd).
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4. Linear evolution equations

In this chapter, we will study the “initial value problem”, also called the abstract Cauchy
problem 

du
dt = Au

u(0) = u0

(4.1)

for suitable densely-defined operator A, D(A) on H.

4.1. The exponential of a bounded operator

The simplest case for (4.1) is when A ∈ B(H) is bounded (and thus D(A) = H). This
case is very similar to linear ODEs.

Lemma 4.1. Let A ∈ B(H). Then the exponential series

eA :=
∞∑
j=0

Aj

j!

converges in B(H), and
∥eA∥ ≤ e∥A∥.

Proof. We have
∥Aj∥ ≤ ∥A∥j , (4.2)

and thus ∥∥∥ m∑
j=n

Aj

j!
∥∥∥ ≤

m∑
j=n

∥A∥j

j! ≤ e∥A∥ −
n−1∑
j=0

∥A∥j

j! . (4.3)

The right hand side converges to zero for n → ∞ since the exponential series of real
numbers converges. The sequence of partial sums is thus Cauchy in B(H) and by com-
pleteness it has a limit eA.

Theorem 4.2. Let A ∈ B(H). For every u0 ∈ H,

u = etAu0 ∈ C∞(R,H) (4.4)

solves the the Cauchy problem (4.1). This solution is the unique maximal solution
to (4.1), that is, if v ∈ C1((−ε, ε),H) solves (4.1), then v = u|(−ε,ε).
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4. Linear evolution equations

Proof. This proof is essentially the same as for linear ODEs.
To start with, we have

u(0) = e0u0 = u0. (4.5)
We now show that u ∈ C1(R,H) with derivative Au, so u solves (4.1). We have

u(t+ h) − u(t) − hAu(t)
h

= 1
h

∞∑
j=0

(t+ h)j − tj

j! Aju0 −A
∞∑
j=0

tj

j!A
ju0

= 1
h

∞∑
j=0

(t+ h)j+1 − tj+1 − (j + 1)htj
(j + 1)! Aj+1u0 (4.6)

The term with j = 0 vanishes, and for j ≥ 1 we have by the mean value theorem

(t+ h)j+1 − tj+1 − (j + 1)htj τj∈[t,t+h]= h(j + 1)(τ j − tj)
σj∈[t,τj ]= h(τj − t)j(j + 1)σj−1, (4.7)

so since |τj − t| ≤ |h|, |σj | ≤ |t| + |h|, we have∣∣∣∣e(t+h)Au0 − etAu0 − h

h

∣∣∣∣ ≤ |h|∥A∥2e(|t|+|h|)∥A∥∥u0∥, (4.8)

which converges to zero as h → 0, so
deAtu0

dt = AeAtu0, (4.9)

which proves the claim. Since u′(t) = eAtAu0 has the same form, we can iterate this and
obtain that u ∈ C∞(R,H).

Now assume that v : (−ε, ε) → H solves (4.1). Then for all |t| ≤ ε

∥u(t) − v(t)∥2 =
∫ t

0

d
ds∥u(s) − v(s)∥2ds

=
∫ t

0
2Re⟨(u(s) − v(s)), A(u(s) − v(s))⟩ds

≤
∫ t

0
2∥A∥∥u(s) − v(s)∥2ds. (4.10)

Thus by Grønwall’s inequality, this is less than the solution to the equation x′ = 2∥A∥x,
x(0) = 0, which vanishes. This proves uniqueness of u.

Corollary 4.3. For t, s ∈ R we have e(t+s)A = etAesA

Proof. While this can also be seen from the exponential series, it follows immediately
from uniqueness of the solutions to (4.1) by the following argument. Let f ∈ H and
consider the functions

u(t) = e(t+s)Af

v(t) = etAesAf.
(4.11)

Both solve (4.1) with initial condition v(0) = eAsf = u(0), so they must be equal. Since
f was arbitary this proves equality of the operators.
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4.2. The Hille-Yosida theorem

4.2. The Hille-Yosida theorem
In this section we will prove a theorem that ensures the existence and uniqueness of
solutions to the abstract Cauchy problem under suitable hypothesis on the generators
A.

The key condition is that the generator should be (maximal) dissipative, which ex-
cludes directions of exponential growth for the solutions. With this condition the solu-
tions will satisfy ∥u(t)∥ ≤ ∥u0∥, instead of the general bound ∥u(t)∥ ≤ e∥A∥, A ∈ B(H)
which cannot be generalised to unbounded operators.

Definition 4.4. Let A, D(A) be a densely defined operator on a Hilbert space H, i.e.,
A : D(A) → H is a linear map and D(A) = H. The operator A, D(A) is called dissipative
if

∀f ∈ D(A) : Re⟨f,Af⟩ ≤ 0. (4.12)
The operator is called maximal dissipative if additionally A− 1 is surjective, i.e.

ran(A− 1) = H. (4.13)

Question 4.5. Which of the following operators with domain D = H2(Rd) is (maximal)
dissipative?

1) A1 = ∆;

2) A2 = −∆;

3) A3 = i∆.

Example 4.6. The operator A = divM∇, D(A) = H2(Rd) from Section 3.2 with
M : Rd → Cd×d positive definite is dissipative since

⟨f,Af⟩ = −
∫
Rd

⟨∇f(x),M(x)∇f(x)⟩dx ≤ 0. (4.14)

If M is uniformly elliptic (cf. (3.23)) and satisfies the hypothesis of Theorem 3.17 then
it is maximal dissipative, since λ−A is onto for all λ > 0 by Theorem 3.17.

Recall from [FA]:

Definition 4.7. Let H,D(H) be densely defined on H. We define the adjoint H∗,
D(H∗) by

D(H∗) := {g ∈ H : ∃hg ∈ H ∀f ∈ D(H) : ⟨Hf, g⟩ = ⟨f, hg⟩},
H∗ : D(H∗) → H,
H∗g := hg

The operator H is called symmetric if H∗ extends H, i.e.,

∀f, g ∈ D(H) : ⟨f,Hg⟩ = ⟨Hf, g⟩.

The operator H is called self-adjoint if H = H∗.
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4. Linear evolution equations

Proposition 4.8. Let (H,D(H)) be a symmetric operator on H. Then A = iH is
dissipative. If H is self-adjoint, then A = iH is maximal dissipative.

Proof. As H is symmetric,
⟨f,Af⟩ = i⟨f,Hf⟩ ∈ iR, (4.15)

so A is dissipative. Now assume that H is self-adjoint. Then by [FA, Prop.4.3.4]

ran(A− 1) = ran(iH − 1) = ran(H + i) = H, (4.16)

so A is maximal dissipative.

Recall from [FA]:

Definition 4.9. The operator A,D(A) is called closed if its graph

G (A) := {(f,Af) : f ∈ D(A)} ⊂ D(A) × H ⊂ H × H (4.17)

is closed in H × H, i.e., for any sequence (fn)n∈N in D(A) such that fn converges to
f ∈ H and Afn converges to g ∈ H, it holds that f ∈ D(A) and Af = g.

The operator A, D(A) is called closable if it has a closed extension.

Definition 4.10. Let A,D(A) be densely defined on H and closed. The set

ρ(A) := {z ∈ C : A− z : D(A) → H is bijective, and (A− z)−1 is bounded} (4.18)

is called the resolvent set of A. For z ∈ ρ(A) the operator

Rz(A) := (A− z)−1 (4.19)

is called the resolvent. The complement σ(A) := C \ ρ(A) is the spectrum of A. It is
composed of

• The point spectrum

σp(A) := {z ∈ C : A− z is not one-to-one}

• The continuous spectrum

σc(A) := {z ∈ C : A− z is one-to-one, ran(A− z) ̸= H but ran(A− z) = H}

• The residual spectrum

σr(A) := {z ∈ C : A− z is one-to-one but ran(A− z) ̸= H}.

Proposition 4.11. Let A, D(A) be dissipative.

a) For every z ∈ C with Re(z) > 0, A− z is injective;
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4.2. The Hille-Yosida theorem

b) If there exists λ0 > 0 such that A− λ0 is onto, then A is closed, the spectrum

σ(A) ⊂ {z ∈ C : Rez ≤ 0},

and for all z with Rez > 0
∥Rz(A)∥ ≤ 1

Rez .

Proof. a) Let z = λ+ iµ with λ > 0. Clearly, A− iµ is also dissipative, so it is sufficient
to prove the statement for µ = 0. We have for f ∈ D(A), λ > 0

∥(A− λ)f∥2 = ∥Af∥2 + λ2∥f∥2 − 2λRe⟨f,Af, ⟩
≥ λ2∥f∥2. (4.20)

This shows that (A− λ)f = 0 =⇒ f = 0, so ker(A− λ) = {0}.
b) By a) and the fact that A − λ0 is onto, we have that A − λ0 is bijective. Apply-

ing (4.20) with λ = λ0 and f = (A− λ)−1g, g ∈ H we find

∥g∥2 ≥ λ2
0∥(A− λ0)−1g∥2, (4.21)

so (A− λ0)−1 ∈ B(H) and λ0 ∈ ρ(A). By [FA, Prop.4.1.4], A is closed.
We also have ∥Rλ0(A)∥ ≤ λ−1

0 , and by [FA, Thm.4.2.5] we thus have B(λ0, λ0) ⊂ ρ(A).
Indeed, for |z − λ0| < λ0,

Rz(A) =
((

1 −Rλ0(A)(z − λ0)
)
(A− λ0)

)−1
= Rλ0(A)

(
1 −Rλ0(A)(z − λ0)

)−1

=
∞∑
k=0

Rz0(A)k+1(z − λ0)k, (4.22)

where the sum converges in the operator norm.
Let z = λ+ iµ ∈ ρ(A) with λ > 0. Applying (4.20) to Aµ = A− iµ with f = Rz(A)g,

g ∈ H we find
∥g∥2 ≥ Re(z)2∥Rz(A)g∥2. (4.23)

Using this bound on the norm of the resolvent, we can then expand around additional
points and enlarge the known resolvent set until it covers the (open) right half plane. The
spectrum is thus contained in the (closed) left half plane (compare [FA, Thm.4.2.9]).

Corollary 4.12. Let A, D(A) be dissipative. The following are equivalent

1) A is maximal dissipative;

2) A− z is surjective for all z ∈ C with Rez > 0;

3) A− λ is surjective for some λ > 0.

37



4. Linear evolution equations

Example 4.13. Let H = divM∇, D(H) = H2(Rd) from Section 3.2 with M : Rd →
Cd×d positive definite, uniformly elliptic. Then A = ±iH is maximal dissipative. Indeed,
since M is self-adjoint, ∫

Rd
⟨∇f(x),M(x)∇f(x)⟩dx (4.24)

is real, so Re⟨f,Af⟩ = 0. Moreover, since H is maximal dissipative by Example 4.6,
Corollary 4.12 implies that H − 1 ± i is onto. Then, so is

A− 1 ± i = ∓i(H − 1 ∓ i). (4.25)

Note that, since H is symmetric and H − 1 ± i is onto, the self-adjointness criterion [FA,
Prop.4.3.4] shows that H − 1, and thus also H, is self-adjoint, so this is a case of
Proposition 4.8.

We will now work toward solving the abstract Cauchy problem (4.1) for a generator
A,D(A) that is maximal dissipative and an initial contition u0 ∈ D(A).

The idea is to use the spectral information on A we have obtained and approximate
A by bounded operators, the so-called Yosida-approximants,

An := −nARn(A) (4.26)

Lemma 4.14. Let A,D(A) be maximal dissipative and define An by (4.26) for n ∈ N.

a) An ∈ B(H) and ∥An∥ ≤ n;

b) nRn(A) + n−1An = −1;

c) An is dissipative;

d) For all f ∈ D(A) we have ∥Anf∥H ≤ ∥Af∥H;

e) For all f ∈ H we have limn→∞ ∥f + nRn(A)f∥H = 0;

f) For all f ∈ D(A) we have limn→∞ ∥Af −Anf∥H = 0.

Proof. a) We have

An = −(A− n)nRn(A) − n2Rn(A) = −n2Rn(A) − n. (4.27)

Hence An ∈ B(H) and ∥An∥ ≤ 2n since ∥Rn(A)∥ ≤ n−1 by Proposition 4.11. The
improved bound ∥An∥ ≤ n follows from c) and Problem ??.

b) This follows by dividing (4.27) by n.

c) By b) we have for f ∈ H

Re⟨f,Anf⟩ = Re⟨−n−1An − nRn(A)f,Anf⟩
= −n−1∥Anf∥2 + n2Re⟨Rn(A)f,ARn(A)f⟩ ≤ 0. (4.28)

38



4.2. The Hille-Yosida theorem

d) Since ∥nRn(A)∥ ≤ 1 we have for f ∈ D(A) (since Rn(A) is both left and right inverse
of A− n)

∥Anf∥ (4.27)= ∥n2Rn(A)f + nf∥ = ∥nRn(A)Af∥ ≤ ∥Af∥. (4.29)

e) Let first f ∈ D(A). Then by b)

∥f + nRn(A)f∥ = n−1∥Anf∥ ≤ n−1∥Af∥ n→∞→ 0. (4.30)

For the general case f ∈ H let ε > 0 and choose g ∈ D(A) with ∥f − g∥ < ε (using
density of D(A)). Then

∥f + nRn(A)f∥ ≤ ∥g + nRn(A)g∥ + ∥(1 + nRn(A))(f − g)∥ ≤ n−1∥Ag∥ + 2ε, (4.31)

so choosing n large enough this is less than 3ε, which proves the claimed convergence.

f) We have
∥Af −Anf∥ = ∥(1 + nRn(A))Af∥, (4.32)

so the claim follows from e).

Definition 4.15. Let A, D(A) be densely defined. The graph norm on D(A) is

∥f∥D(A) =
√

∥f∥2 + ∥Af∥2. (4.33)

Remark 4.16. The graph norm is the same as the norm on H ⊕ H restricted to the
graph:

∥f∥2
D(A) = ∥(f,Af)∥2

H⊕H = ⟨f, f⟩H + ⟨Af,Af⟩H. (4.34)

The normed space D(A), ∥ · ∥D(A) is complete if and only if A is closed.

Theorem 4.17 (Hille-Yosida). Let A,D(A) be maximal dissipative. For every u0 ∈
D(A) there exists a unique function

u ∈ C1([0,∞),H) ∩ C([0,∞), D(A)) (4.35)

satisfying (4.1). Moreover, the map

ΦA : D(A) → C([0,∞),H)
u0 7→ u

is linear and satisfies
∥ΦAu0∥C([0,∞),H) ≤ ∥u0∥H.

It thus extends uniquely to a continuous map ΦA : H → C([0,∞),H) of norm one.
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A. Appendix

A.1. The Lebesgue integral

This section summarizes those results from the theory of integration that are most
important for the course, see [Ru] for an introduction and [LL] for more details.

Let B(Rd) be the Borel σ-algebra on Rd. That is, the smallest collection of subsets
B ⊂ Rd that contains all open sets and is closed under complements, finite intersections
and countable unions. Elements of B are called measurable sets.

Definition A.1. A measure is a function

µ : B(Rd) → R+ ∪ {∞}

with the properties

µ(∅) = 0

µ
( ∞⋃
j=1

Bj
)

=
∞∑
j=1

µ(Bj)

for any family of disjoint sets (Bj)j∈N.
The Lebesgue measure λ is the unique measure that is invariant by translation and

satisfies λ([0, 1]d) = 1.

Definition A.2. A function f : Rd → C is called measureable if for every B ∈ B(C) ∼=
B(R2)

f−1(B) = {x ∈ Rd : f(x) ∈ B}

is measurable, i.e., an element of B(Rd).

The characteristic function χB of any set B ∈ B(Rd) is measurable. Its integral is
defined as ∫

χB(x)λ(dx) = λ(B). (A.1)

A simple function is a linear combination of characteristic functions. Any measurable
function is the pointwise limit of simple functions,

f(x) = lim
n→∞

n∑
j=1

aj,nχBj,n(x). (A.2)
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A.1. The Lebesgue integral

Moreover, if f is non-negative, the simple functions can be chosen so that the value in
each point is increasing in n. For a non-negative function one thus defines∫

f(x)λ(dx) := lim
n→∞

n∑
j=1

aj,nλ(Bj,n) ∈ R+ ∪ {∞}. (A.3)

Since the right hand side is an increasing sequence of numbers that are positive or +∞,
this is well defined but possibly infinite.

Definition A.3. A positive measurable function f : Rd → R+ is called integrable
if (A.3) is finite.

A measurable function f : Rd → C is called integrable if |f | is integrable.

If f : Rd → C is integrable, then∫
f(x)dx =

∫
f(x)λ(dx) = lim

n→∞

n∑
j=1

aj,nλ(Bj,n) (A.4)

is a well-defined complex number.
If A ∈ B(Rd) is a measurable set we define∫

A
f(x)dx =

∫
χA(x)f(x)dx, (A.5)

where χA is the characteristic function. We say that f is integrable on A if fχA is
integrable.

If f is Riemann-integrable then f is Lebesgue-integrable and the integrals are equal [Ru,
Thm.11.33].

Definition A.4 (Lebesgue spaces). Let 1 ≤ p < ∞

L p(Rd) := {f : Rd → C : |f |p is integrable}.

The Lebesgue space Lp(Rd) is the quotient of L p(Rd) under the equivalence relation

f ∼ g :⇔ λ
(
{x : f(x) ̸= g(x)}

)
= 0

of equality almost everywhere. It is a Banach space with the norm

∥f∥p =
(∫

|f |p(x)dx
)1/p

,

where f is any representative in the equivalence class.
For p = ∞ we define L p(Rd) as the space of measureable functions for which

∥f∥∞ = ess−sup|f | := inf
{
t ∈ R : λ

(
f−1(t,∞)

)
= 0

}
(A.6)

is finite. The Lebesgue space Lp(Rd) is the quotient of L p(Rd) by the same equivalence
relation.
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Proposition A.5 (Hölder’s inequality). Let 1 ≤ p, q ≤ ∞ so that p−1 + q−1 = 1, with
the convention that ∞−1 = 0. Then for f ∈ Lp(Rd), g ∈ Lq(Rd) we have fg ∈ L1(Rd)
and ∣∣∣∣ ∫ f(x)g(x)dx

∣∣∣∣ ≤ ∥f∥p∥g∥q. (A.7)

For d > 1 an important result concerns the relation of the d-dimensional integral and
the iteration of lower-dimensional integrals.

Theorem A.6. Fubini-Tonelli Let n,m ≥ 1, f : Rn × Rm → R+ be a measurable
function and A ∈ B(Rn+m).

a) If f ≥ 0, then∫
A

f(x, y)λ(d(x, y)) =
∫

π1(A)

( ∫
π−1

1 ({x})∩A

f(x, y)dy
)

dx =
∫

π2(A)

( ∫
π−1

2 ({y})∩A

f(x, y)dx
)

dy

where πj(A), j = 1, 2 are the projections of A to Rn, Rm respectively, and the equality
is understood in the sense that if one expression is infinite, all are.

b) If f is integrable on A, then
a) The functions

x 7→ f(x, y), y 7→ f(x, y)

are integrable on π−1
2 ({y})∩A for almost every y ∈ Rm, respectively on π−1

1 ({x})∩
A for almost every x ∈ Rn;

b) the functions (set equal to zero where the integral is not defined)

φ(y) =
∫

π−1
2 ({y})∩A

f(x, y)dx, ψ(x) =
∫

π−1
1 ({x})∩A

f(x, y)dy

are integrable;
c) the identity ∫

π2(A)

φ(y)dy =
∫
A

f(x, y)dy =
∫

π1(A)

ψ(x)dx

holds.

The well-known transformation formula holds for the Lebesgue integral.

Theorem A.7 (Change of variables). Let A ∈ B(Rd), let φ : Rd → Rd be a C1-
diffeomorphism, and denote by |J(x)| := | detDφ(x)|. Then if f is integrable on A,
x 7→ f(φ(x))|J(x)| is integrable on φ−1(A) and∫

A

f(x)dx =
∫

φ−1(A)

f(φ(x))|J(x)|dx.
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The most important properties of the Lebesgue integral are the convergence theorems.

Theorem A.8 (Monotone Convergence). Let (fn)n ∈ N be a sequence of measurable
functions with fn ≤ fn+1 and

lim
n→∞

fn(x) = f(x)

almost everywhere for some function f : Rd → C. Then f is measureable and

lim
n→∞

∫
fn(x)dx =

∫
f(x)dx.

Theorem A.9 (Dominated Convergence). Let (fn)n∈N be a sequence of integrable func-
tions and assume there is a measurable function f so that

lim
n→∞

fn(x) = f(x)

almost everywhere. Assume moreover that there exists a positive, integrable function g
so that

∀n ∈ N : |fn| ≤ g

almost everywhere. Then f is integrable and

lim
n→∞

∫
fn(x)dx =

∫
f(x)dx.

An important corollary to this result concerns the exchange of integration and differ-
entiation.

Corollary A.10. Let U ⊂ Rk be open and f : U × Rd → C a measurable function such
that

1. for all η ∈ U , x 7→ f(η, x) is integrable,

2. for almost all x ∈ Rd, η 7→ f(η, x) is continuously differentiable,

3. there exists a positive, integrable function g : Rd → R+ with

∀η ∈ U :
∣∣∇ηf(η, x)

∣∣ ≤ g(x).

Then η 7→
∫
f(η, x)dx is continuously differentiable and for all j = 1, . . . , k

∂ηj

∫
f(η, x)dx =

∫
∂ηjf(η, x)dx.
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Problem 1. Part 1
For any n ∈ N, we set fn := 1[n,n+1].

1. Show that for any x ∈ R+, limn→+∞ fn(x) = 0

2. Show that for any n ∈ N, we have
∫
R+
fn(x)dx = 1

Part 2
We will show that the sequence (fn)n∈N does not satisfy the following property: there
exist a non-negative function g ∈ L1(R+) such that

a.e. x ∈ R+, ∀n ∈ N, |fn(x)| ≤ g(x). (B.1)

1. Show that for any x ∈ R+
sup
n∈N

{|fn(x)|} = 1.

2. Show that, if a measurable function g : R+ → R satisfying (B.1), then g /∈ L1(R+).

Problem 2. Let a ∈ C such that Re(a) > 0. The goal of this exercise is to show that

∀x ∈ Rd,
1

(2π) d
2

∫
Rd
e−ix·ξe− |x|2

2a dx = a
d
2 e− a

2 |ξ|2 (B.2)

Part 1
For any x ∈ R, we define h(x) := e− x2

2a . We assume that h ∈ S (Rd).

1. Show that h′(x) = −x
ah(x).

2. Show that h′ ∈ L1(R) and that ĥ′(ξ) = iξĥ(ξ).

3. Show that ĥ′(ξ) = −ix̂h(ξ).

4. Recall that ∫
R
h(x)dx =

√
2aπ.

Show that ĥ(0) =
√
a.

5. Deduce that ĥ is the solution of the following Cauchy problem{
ĥ′(ξ) = −aξĥ(ξ) in R,
ĥ(0) =

√
a.

(B.3)
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6. Deduce from that, for any ξ ∈ R

ĥ(ξ) =
√
ae− a

2 ξ
2
.

Part 2 By remarking that for any x = (x1, . . . , xd) ∈ Rd we have

e− |x|2
2a =

d∏
j=1

h(xj),

show Formula (B.2).

Problem 3. Let u0 ∈ S (Rd). For any t ≥ 0 and ξ ∈ Rd, we set

u(t, x) := 1
(2π) d

2

∫
Rd
eix·ξe−t|ξ|2 û0(ξ)dξ.

Part 1

1. Show that for any (t, x) ∈ (0,+∞) × Rd, we have

∂tu(t, x) := 1
(2π) d

2

∫
Rd

(−|ξ|2)eix·ξe−t|ξ|2 û0(ξ)dξ.

2. Show that u ∈ C∞((0,+∞) × Rd).

3. Show that ∂tu− ∆u = 0 in (0,+∞) × Rd.
Part 2

1. Show that (t, x) ∈ (0,+∞) × Rd,
1

(2π) d
2

∫
Rd
eix·ξe−t|ξ|2 û0(ξ)dξ = 1

(4πt) d
2

∫
Rd
e− |x−y|2

4t u0(y)dy.

2. Show that limt→0+ u(t, x) = u0(x).

3. Deduce that for any x ∈ Rd, we have u(0, x) = u0(x).
Part 3
Show that, for any f ∈ S (Rd), we have

f(x) = 1
(2π) d

2

∫
Rd
eix·ξ f̂(ξ)dξ.

Problem 4. For multiindeces α, β ∈ Nd, we declare that β ≤ α if βj ≤ αj for all
j = 1, . . . , d. Denote by (

α
β

)
=

d∏
j=1

(
αj
βj

)
.

Prove the generalised Leibniz formula for f, g ∈ C |α|(Rd)

∂α(fg) =
∑
β≤α

(
α
β

)
(∂βf)(∂α−βg).
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Problem 5. Let u0 ∈ S (Rd). For any (t, x) ∈ R × Rd we set

u(t, x) := 1
(2π) d

2

∫
Rd
eix·ξeit|ξ|

2
û0(ξ)dξ.

a) Show that u ∈ C∞(R × Rd).

b) Show that u solves the Schrödinger equation{
∂tu+ i∆u = 0, in R × Rd,
limt→0 u(t, x) = u0(x), in Rd. (B.4)

Problem 6. Let u0 and u1 in S (Rd). For any (t, x) ∈ R × Rd we set

u(t, x) := 1
(2π) d

2

∫
Rd
eix·ξ cos(t|ξ|)û0(ξ)dξ + 1

(2π) d
2

∫
Rd
eix·ξ sin(t|ξ|)

|ξ|
û1(ξ)dξ.

1. Show that u ∈ C∞(R × Rd).

2. Show that u solves the wave equation{
∂2
t u− ∆u = 0, in R × Rd,

limt→0 u(t, x) = u0(x) and limt→0 ∂tu(t, x) = u1(x), in Rd. (B.5)

Problem 7. Let f and g in S (Rd) and P be a polynomial function. Show the following
properties

• fg ∈ S (Rd),

• Pf ∈ S (Rd).

Problem 8. Let u0 ∈ S (Rd) and v ∈ Rd.

1. Let us set for any (t, ξ) ∈ R × Rd, Φ(t, ξ) := eitv·ξû0(ξ).
a) Show that for any t ∈ R, Φ(t, ·) ∈ S (Rd).
b) Show that the function u : (t, x) ∈ R × Rd 7→ u(t, x) := F−1(Φ(t, ·))(x)

satisfies {
∂tu− v · ∇u = 0 in R × Rd,

u(0, ·) = u0 in Rd.

2. Using the Fourier inversion formula, find φ : R × Rd → Rd such that for any
(t, x) ∈ R × Rd, we have u(t, x) = u0(φ(t, x)).

3. Let p ∈ [1,+∞]. Show that

∀t ∈ R, ∥u(t, ·)∥Lp = ∥u0∥Lp .
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Problem 9. Let p, q and r in [1,∞] such that

1
p

+ 1
q

= 1
r
.

Let f ∈ Lp(Rd) and g ∈ Lq(Rd). The goal of this exercise is to show that

∥fg∥Lr ≤ ∥f∥Lp∥g∥Lq . (B.6)

1. Show (B.6) for r = ∞.

2. Assume that r ̸= ∞. Deduce (B.6) from the standard Hölder estimate (which
correspond to the case r = 1).
Hint: use that r/p+ r/q = 1.

Problem 10. Let p, q and r in [1,∞] such that

1
p

+ 1
q

= 1 + 1
r
.

Let f ∈ Lp(Rd) and g ∈ Lq(Rd). The goal of this exercise is to show that f ⋆g ∈ Lr(Rd),
with

∥f ⋆ g∥Lr ≤ ∥f∥Lp∥g∥Lq . (B.7)

1. Assume that r = ∞. Show that (B.7) holds.

2. Assume that p = q = 1. Show that (B.7) holds.

3. Assume that p = 1.
a) Show that (∫

Rd
|f(x− y)||g(y)|dy

)q
≤ (|f | ⋆ |g|q) (x)∥f∥q−1

L1 .

Hint: Remark that |f(x− y)||g(y)| = |f(x− y)|1− 1
q |f(x− y)|

1
q |g(y)|.

b) Deduce from 2. that
∥f ⋆ g∥Lq ≤ ∥f∥L1∥g∥Lq .

4. Assume that p, q and r belong to ]1,∞[.
a) Let p1, p2 and p3 in [1,∞] such that 1

p1
+ 1

p2
+ 1

p3
= 1 and u ∈ Lp1(Rd),

v ∈ Lp2(Rd) and w ∈ Lp3(Rd). Show that

∥uvw∥L1 ≤ ∥u∥Lp1 ∥v∥Lp2 ∥w∥Lp3 .

b) Show that |f(x− y)||g(y)| = |f(x− y)|p/r|g(y)|q/r|f(x− y)|1−p/r|g(y)|1−q/r.
c) Conclude.
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B. Problems

Problem 11. Let p ∈ [1,∞] and g, f ∈ Lp(Rd). The goal is to show that

∥f + g∥Lp ≤ ∥f∥Lp + ∥g∥Lp . (B.8)

1. Show (B.8) for p = ∞ and p = 1.

2. Assume that p ∈]1,∞[.
a) Show that

|f(x) + g(x)|p ≤ |f(x)||f(x) + g(x)|p−1 + |g(x)||f(x) + g(x)|p−1.

b) Show that ∫
Rd

|f(x)||f(x) + g(x)|p−1dx ≤ ∥f∥Lp∥f + g∥
p−1

p

Lp .

c) Deduce (B.8).

Problem 12. Let p ∈ [1,∞[. Show that

∀λ > 0,
∫
Rd

1{|f |≥λ}dx ≤ 1
λp

∥f∥pLp .

Problem 13. Let p and q in [1,∞] such that p < q. Show that if f ∈ Lp(Rd) ∩Lq(Rd),
then f ∈ Lr(Rd) for every r ∈ [p, q].
Hint: Use that if r ∈ [p, q], then there exists θ ∈ [0, 1] such that 1/r = θ/p + (1 − θ)/q
and show that ∥f∥Lr ≤ ∥f∥θLp∥f∥1−θ

Lq .

Problem 14. Let f , g and h in S (Rd). Show the following properties

• f ⋆ g = g ⋆ f ,

• f ⋆ (g + h) = f ⋆ g + f ⋆ h,

• (f ⋆ g) ⋆ h = f ⋆ (g ⋆ h).

Problem 15. Let us consider a real valued function u : [0,+∞[×Rd → R. solution of
the wave equation.

∂2
t u− ∆u = 0 in ]0,+∞[×Rd.

Assume that

(H1) u ∈ C2
b ([0,+∞[×Rd);

(H2) there exists R > 0, such that u(0, ·) and ∂tu(0, ·) vanish on B(0, R) := {x ∈
Rd | |x| ≤ R}.

The goal of this exercise is to show that

u = 0 in K(R) := {(t, x) ∈ [0,+∞[×Rd | |x| ≤ R− t}.
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Part 1

For any ε ≥ 0 and (t, x) ∈ [0,+∞[×Rd, we set

φε(t, x) := R− (t+
√

|x|2 + ε).

1. Sow that for any t ∈ [0,+∞[ and s > 0, the following quantity

Eεs(t) := 1
2

∫
Rd
e2sφε(t,x)(|∂tu(t, x)|2 + |∇u(t, x)|2)dx,

is well-defined.

2. Assume that ε > 0.
a) Show that

d

dt
Eεs = −s

∫
Rd
e2sφε(|∂tu|2 + |∇u|2)dx− 2s

∫
Rd
e2sφε(∇φε · ∇u)∂tudx.

b) Show that ∥∇φε(t, ·)∥L∞ ≤ 1.
(Hint: recall that ∥∇φε(t, ·)∥L∞ = supx∈Rd

(∑d
j=1 |∂jφε(t, x)|2

)1/2
).

c) Show that

−2
∫
Rd
e2sφε(∇φε · ∇u)∂tudx ≤

∫
Rd
e2sφε(|∂tu|2 + |∇u|2)dx.

(Hint: use the estimate 2ab ≤ a2 + b2)
d) Deduce that

∀t ∈ [0,+∞[, Eεs(t) ≤ Eεs(0).

3. Deduce from the dominated convergence theorem that

∀t ∈ [0,+∞[, E0
s (t) ≤ E0

s (0).

4. Deduce from 3. that
∀t ∈ [0,+∞[, lim

s→+∞
E0
s (t) = 0.

(Hint: use that φ0(0, x) < 0 when x ∈ B(0, R) and (H2)).

5. Conclude that
∀(t, x) ∈ K(R), u(t, x) = 0.

Problem 16. (Heat equation in Lp (I)) For any t > 0 and f ∈ S (Rd), we define the
function et∆f by

et∆f := f ⋆ ht,

where
∀y ∈ Rd, ht(y) := 1

(4πt) d
2
e− |y|2

4t .
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B. Problems

1. Let f ∈ S (Rd). What is the Cauchy problem satisfied by u : (t, x) ∈]0,+∞[×Rd 7→
et∆f ∈ R.

2. Let p ∈ [1,∞[ and t > 0. Show that for any q ∈ [p,∞[, et∆ extends to a continuous
operator from Lp(Rd) to Lq(Rd) and that

∥et∆∥B(Lp,Lq) ≤ ∥ht∥L(1+1/q−1/p)−1 .

3. Show that for any p ∈ [1,∞[, q ∈ [p,∞[ and t > 0, we have

∥et∆∥B(Lp,Lq) ≤ 1
t

d
2 ( 1

p
− 1

q
)
.

4. Show that for any f ∈ Lp(Rd) with p ∈ [1,∞[, the function u : (t, x) ∈]0,+∞[×Rd 7→
et∆f ∈ R belong in C∞(]0,+∞[×Rd) and satisfies the heat equation.

5. Let p ∈ [1,∞[ and f ∈ Lp(Rd). Show that limt→0+ et∆f = f in Lp(Rd).

Problem 17. (Schrödinger equation in L2 (I)) For any t ∈ R and f ∈ S (Rd), we define
the function

eit∆f := 1
(2π) d

2

∫
Rd
eix·ξeit|ξ|

2
f̂(ξ)dξ.

1. Show that for any t ∈ R the operator eit∆ extends to an operator from L2(Rd) into
itself and that

∀f ∈ L2(Rd), ∥eit∆f∥L2 = ∥f∥L2 .

Problem 18. (Schrödinger equation in L2 (II)) Let t and s in R. Show that

• ei0∆ = IdL2 .

• eit∆ ◦ eis∆ = ei(s+t)∆.

• (eit∆)∗ = e−it∆.

Problem 19. (Slowly decaying function) We define the set

R(Rd) := {f : Rd → C measurable : ∃a ∈ N, ⟨·⟩af ∈ L1(Rd)},

where ⟨·⟩ := (1 + | · |2) 1
2 . Sow that any element of R(Rd) is a regular distribution.

Problem 20. (Leibniz rule in S ′) Let α ∈ Nd, T ∈ S ′(Rd) and f ∈ S (Rd). Show that
∂α(fT ) = ∑

β≤α
(α
β

)
∂βf∂β−αT .

(Hint: begin the induction by the case |α| = 1.)

Problem 21. (Classical distribution ) Show that the following maps are distributions

1. (Dirac distribution) For a ∈ Rd, δa : f ∈ S (Rd) 7→ f(a).

Problem 22. (Operations with distributions)
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Derivative

1. Show that (1R+)′ = δ0 in S ′(R).

2. Show that (sgn)′ = 2δ0 in S ′(R).

Multiplication

1. Let T ∈ S ′(Rd) and f be polynomial function. Show that fT ∈ S ′(Rd).

Convolution

1. Compute δa ⋆ f , with a ∈ Rd and f ∈ S (Rd).

Fourier transform

1. Compute F (δa) with a ∈ Rd.

2. Show that F (1) = (2π) d
2 δ0 in S ′(Rd).

Convergence

1. Show that limt→0+ ht = δ0 in S ′(Rd) for the heat kernel ht(y) := 1
(4πt)

d
2
e− |y|2

4t .

Problem 23. (Principal value)

1. (Principal value of 1/x) Show that vp( 1
x) : f ∈ S (R) 7→ limε→0+

∫
R\[−ε,ε]

f(x)
x dx is

a tempered distribution.

2. Show that log(| · |) ∈ S
′(R) and that (log(|x|))′ = vp( 1

x) in S ′(R).

3. Show that xvp( 1
x) = 1 in S ′(R).

4. Show that F (vp( 1
x)) = i

√
2π 1R+ in S ′(R). (Hint: use that xvp( 1

x) = 1, F (xT ) =
−iF (T )′ and (1R+)′ = δ0)

Problem 24. (Wigner measure) We define the Wigner transform at scale h > 0 of a
function f ∈ L2(Rd) by the following formula

∀(x, ξ) ∈ Rd × Rd, W h[f ](x, ξ) := 1
(2π)d

∫
Rd
eiy·ξf

(
x− h

2 y
)
f

(
x+ h

2 y
)
dy.
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B. Problems

Part 1 (Wigner transform)
Let f ∈ L2(Rd) and h > 0.

1. Show that for any (x, ξ) ∈ Rd × Rd, we have

W h[f ](x, ξ) = 1
(2π)d

∫
Rd
ei

y
h

·ξf

(
x− y

2

)
f

(
x+ y

2

)
dy.

2. Show that W h[f ] ∈ L∞(R2d) and that

∥W h[f ]∥L∞(R2d) ≤ 2d
hd

∥f∥2
L2(Rd).

3. Show that
∥W h[f ]∥L2(R2d) = 1

(2πh) d
2

∥f∥2
L2(Rd)

4. Show that∫
Rd
W h[f ](x, ξ)dξ = |f(x)|2 and

∫
Rd
W h[f ](x, ξ)dx = 1

(2π) d
2

|f̂
(
ξ

h

)
|2

5. Deduce that ∫
R2d

W h[f ](x, ξ)dξdx = ∥f∥2
L2(Rd).

Part 2 (Wigner distribution)

1. Let f ∈ L2(Rd) and h > 0. Show that the map a ∈ S (R2d) 7→
∫
R2d a(x, ξ)W h[f ](x, ξ)dξdx

defines a tempered distribution on R2d. In the following we denote also by
W h[f ] this distribution.

Part 3 (Wigner measure)
Let (fh)h>0 be a bounded family of L2(R2d). We say that (fh)h>0 admits a Wigner
measure T , if T ∈ S ′(R2d) and if for any sequence of positive real numbers (hn)n∈N
converging to 0, W hn [fhn ] converges to T in S ′(R2d).

1. Let ψ ∈ C0(Rd). For any a ∈ S (R2d), we define Tψ(a) := 1
(2π)d

∫
Rd a(x, 0)ψ(x)dx.

Show that Tψ ∈ S ′(R2d).

2. (Wigner measure of traveling wave) Let α ∈]0, 1[, k ∈ Rd and f ∈ C0(Rd). For
any h > 0 and x ∈ Rd, we set fh(x) := f(x)e i

hα k·x. Show that T|f |2 is a Wigner
measure of (fh)h>0.

3. (Wigner measure of Coherent states) Let us define the

Ψξ0,x0
h (x) := 1

(πh) d
4
e− |x−x0|2

2h e
i
h
ξ0·x.
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a) Show that
W h[Ψξ0,x0

h ](x, ξ) := 1
(πh)N e

|x−x0|2+|ξ−ξ0|2
h .

b) Show that δ(x0,ξ0) is a Wigner measure of (Ψξ0,x0
h )h>0.

Part 4 (From the Schrödinger equation to the transport equation)

1. Let h > 0 and f ∈ C∞(R × Rd) ∩ C1(R; S (Rd)) be a solution of the Schrödinger
equation

∂tf − h

2 i∆f = 0 in R × Rd.

We admit that W h[f(t, ·)] ∈ S (R2d) for any t ∈ R. Show that, for any ξ ∈ Rd,
the function ρ : (t, x) ∈ R × Rd 7→ W h[f(t, ·)](x, ξ) is a solution of the transport
equation

∂tρ+ ξ · ∇ρ = 0 in R × Rd.

Problem 25 (The Shrödinger equation and uniqueness). For any t ∈ R\{0} and x ∈ Rd,
we set

kt(x) := 1
(4πt) d

2
e

i|x|2
4t .

1. Let u0 ∈ S ′(Rd). Show that kt ⋆ u0 ∈ S ′(Rd)) and that t 7→ kt ⋆ u0 is continuous
C(R; S ′(Rd)). (Hint: show that for any f ∈ S (Rd), t ∈ R 7→ kt ⋆ f belongs to
C(R; S ′(Rd)) and extends this result by duality.)

In the following, we set u := k ⋆ u0.

2. Show that u satisfies the Schrödinger equation in S ′(R × Rd), that is

(i∂t + ∆)u = 0 in S ′(R × Rd).

3. Show that, for any φ ∈ S (R × Rd) and t ∈ R \ {0}∫ t

0
⟨u, (i∂t+∆)φ(s, ·)⟩S ′(Rd),S (Rd)ds

= ⟨u0, iφ(0, ·)⟩S ′(Rd),S (Rd) − ⟨u(t), iφ(t, ·)⟩S ′(Rd),S (Rd) (B.9)

4. Let ψ ∈ S (Rd), T > 0 and χT ∈ C∞
c (R) such that χT (t) = 1 for any t ∈

[0, T ]. We define the function Φ by setting for any (t, ξ) ∈ R × Rd, ΦT (t, ξ) :=
ei(T−t)|ξ|2ψ̂(ξ)χT (t).

a) Show that φT : (t, x) ∈ R × Rd 7→ F −1(ΦT (t, ξ)) belongs to S (R × Rd) and
satisfies

i∂tφ
T + ∆φT = 0 in [0, T ] × Rd.
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B. Problems

b) Assume that u0 = 0. Deduce from (B.9) that u(T ) = 0 in S ′(Rd).

5. Deduce that for any u0 ∈ S ′(Rd), the distribution k ⋆ u0 is the unique solution of
the Schrödinger equation in S ′(R × Rd) satisfying (B.9) for any φ ∈ S (R × Rd)
and t ∈ R \ {0}.

Problem 26 (Green’s function for the Laplacian).

1. Let g : R → R be the function given by g(x) = 1
2e−|x| for x ∈ R. Show that g

(more precisely the associated distribution, φg) is the unique solution in S ′(R) to
the equation

(1 − ∆)φ = δ0 ,

by
a) the Fourier transform;
b) using the distributional derivative.

2. Prove that for f ∈ S (R) the unique solution to the equation

(1 − ∆)u = f

is
u(x) =

∫
g(x− y)f(y)dy.

Problem 27 (Dispersive estimate for Schrödinger equation). Let u0 ∈ Lp(Rd) for p ∈
[1, 2] and u be the solution of the Schrödinger equation in the sens of Exercise 1.1, Item
5. with initial data u0.

1. Show that, if u0 ∈ L1(Rd), then

∀t ∈ R \ {0}, ∥u(t)∥L∞ ≤ 1
(4πt) d

2
∥u0∥L1

2. Show that, if u0 ∈ L2(Rd), then

∀t ∈ R \ {0}, ∥u(t)∥L2 = ∥u0∥L2 .

(Hint: use that F (kt) = e−it|·|2 in S ′(Rd).)

3. (Bonus) Let p′ a real number such that 1
p + 1

p′ = 1. Show that,

∀t ∈ R \ {0}, ∥u(t)∥Lp′ ≤ 1
(4π|t|)

d
2 ( 1

p
− 1

2 )
∥u0∥Lp .

(Hint: use the Riesz-Thorin Theorem.)

Problem 28 (Nonlinear heat equation). (Nonlinear heat equation) Let u0 ∈ Ld(Rd).
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Part 1: Functional setting. We define the set

K :=
{
u ∈ C ((0,+∞);L2d(Rd))

∣∣∣∥u∥K := sup
s>0

{s
1
4 ∥u(s, ·)∥L2d} < ∞

}
.

1. Show that K is a Banach space.

Part 2: Nonlinear estimates. For any u, v and w in K, we define

∀t ≥ 0, T (u, v, w)(t) :=
∫ t

0
e(t−s)∆ (u(s, ·)v(s, ·)w(s, ·)) ds.

1. In this question we will show that for any u, v and w in K, we have T (u, v, w) ∈ K
and that there is a positive constant C such that

∥T (u, v, w)∥K ≤ C1∥u∥K∥v∥K∥w∥K. (B.10)

Let u, v and w in K.
a) Show that

∀t ≥ 0, ∥T (u, v, w)(t)∥L2d ≤
(∫ t

0

1
(t− s) 1

2
ds

)
∥u(s, ·)v(s, ·)w(s, ·)∥L2d/3 .

b) Deduce that

∀t ≥ 0, ∥T (u, v, w)(t)∥L2d ≤
(∫ t

0

1
(t− s) 1

2 s
3
4
ds

)
∥u∥K∥v∥K∥w∥K.

c) Deduce that (B.10) holds.
d) Show that T (u, v, w) ∈ K.

Part 3: Duhamel formula. Let u0 ∈ Ld(Rd). For any t ≥ 0 and u ∈ K, we define

Φ(u)(t) := et∆u0 + T (u, u, u)(t).

1. Show that there exists a constant C2 such that for any u ∈ K, we have

∥Φ(u)∥K ≤ C2
(
∥u0∥Ld + ∥u∥3

K

)
(B.11)

and that Φ ∈ K.

2. Show that there exists a constant C3 such that for any u and v in K, we have

∥Φ(u) − Φ(v)∥K ≤ C3
(
∥u∥2

K + ∥v∥2
K + ∥u∥K∥v∥K

)
∥u− v∥K. (B.12)

(Hint: use Estimate (B.10))
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B. Problems

Part 4: Fixed point argument Let ε > 0. Assume that

∥u0∥Ld < ε. (B.13)

and we introduce the set

B(2ε) :=
{
u ∈ K

∣∣∥u∥K < 2ε
}
.

1. Show that B(2ε) is a complete metric space for the distance induce be K norm,
namely ∥ · ∥K.

2. Show that there exists a constant C4 which does not depends of ε, such that for
any u and v in B(2ε), we have

∥Φ(u)∥K ≤ C4(1 + ε2)ε

and
∥Φ(u) − Φ(v)∥K ≤ C4ε

2∥u− v∥K.

3. Choose ε > 0 small enough such that Φ is a strict contraction of B(2ε).

4. Deduce that Φ has a unique fixed point u. (Hint: use the Banach fixed point
theorem.)

Remark B.1. The fixed points of Φ are called the mild solutions of the equation{
∂tu− ∆u+ u3 = 0, in ]0,+∞[×Rd,
u(0, ·) = u0, in Rd,

(B.14)

for small enough initial data u0. We can obtain the existence of mild solutions for u0
large, but only for small times. The same method (so called "Kato method") can be used
to show the existence of solutions to the Navier-Stokes equation.

Problem 29 (Density in Hs(Rd)). Let s ∈ R. Show that S (Rd) is dense in Hs(Rd).

Problem 30 (Weak and strong convergence). Let H be a Hilbert space and (fn)n∈N a
sequence of H that converges weakly to f in H and such that (∥fn∥H)n∈N converges to
∥f∥H. Show that (fn)n∈N converges strongly to f in H.

Problem 31 (Local compact embedding). Let t < s, φ ∈ S (Rd). The goal of this exer-
cise is to show that the multiplication by φ is a compact operator from Hs(Rd) to Ht(Rd).

Let (un)n∈N be e sequence of Hs(Rd) such that supn∈N{∥un∥Hs} ≤ 1.

1. Show that, up to extraction of a subsequence, (un)n∈N converging weakly inHs(Rd)
to an element u.
Let us set vn := un − u.
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2. Show that there exists a constant C1 such that

sup
n∈N

{∥φvn∥Hs} ≤ C1.

3. Show that for any positive real number R, we have

∥φvn∥Ht ≤
∫
B(0,R)

(1 + |ξ|2)t|F (φvn)|2dξ + C2
1

(1 +R2)s−t .

Let us consider ε > 0.

4. Show that there exists a positive real number R such that

C2
1

(1 +R2)s−t ≤ ε.

5. For all ξ ∈ Rd, we set ψξ := F −1((1 + | · |2)−sF (φ)(ξ − ·)). Show that, for any
ξ ∈ Rd, ψξ belongs to S (Rd) and that

∀ξ ∈ Rd, F (φvn)(ξ) = ⟨ψξ, vn⟩.

6. Deduce that for any ξ ∈ Rd, we have limn→+∞ F (φvn)(ξ) = 0.

7. Assume that there exists a positive real number M > 0 such that

sup
ξ∈B(0,R), n∈N

{|F (φvn)|} ≤ M. (B.15)

8. Conclude.
We will now show (B.15).

9. Show that there exists a positive real number C2 such that

∀µ ∈ Rd, |φ̂(µ)| ≤ C2

(1 + |µ|2) d
2 +|s|−1

.

10. Show that for any ξ ∈ B(0, R),∫
Rd

(1 + |η|2)−s|φ̂(ξ − η)|2dη

≤ C1

∫
|η|≤2R

(1 + |η|2)|s|ds+ C2

∫
|η|≥2R

(1 + |η|2)|s|

(1 + |ξ − η|2) d
2 +|s|+1

dη.

11. Deduce that there exists a positive real number C3 such that

∀ξ ∈ B(0, R),
∫
Rd

(1 + |η|2)−s|φ̂(ξ − η)|2dη ≤ C3(1 +R2)|s|+ d
2

(Hint: to bound
∫

|η|≥2R(1 + |η|2)−s(1 + |ξ − η|2)−( d
2 +|s|+1)dη, use that if |ξ| ≤ R

and |η| ≥ 2R, we have |ξ − η| ≥ |η|
2 .)
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B. Problems

12. Deduce that (B.15) holds.

Problem 32 (Norm of the heat propagator). Let t > 0. Show that ∥et∆∥B(L2(Rd)) = 1.

Problem 33. Let k ∈ N0, f ∈ Hk(Rd) and g ∈ C∞(Rd) with ∥∂αg∥∞ < ∞ for
every α ∈ Nd0. Prove that fg ∈ Hk(Rd) and the generalised Leibniz rule holds for the
derivatives of order |α| ≤ k.

Problem 34. Let H be a Hilbert space and A ∈ B(H).

1. Show that, if ∥A∥B(H) < 1 is bounded, then 1 +A is invertible.

2. Show that σ(A) is compact.

Problem 35 (The Lax-Milgram Theorem). Let H be a Hilbert space and

α : H × H → C

a sesquilinear form. Asssume that

• α is bounded: there exists C > 0 so that for all f, g ∈ H

|α(f, g)| ≤ C∥f∥∥g∥;

• α is coercive: there exists a > 0 so that for all f ∈ H

α(f, f) ≥ a∥f∥2.

Prove that:

1. There exists A ∈ B(H) so that α(f, g) = ⟨Af, g⟩;

2. A is bijective with bounded inverse satisfying ∥A−1∥ ≤ a−1;

3. g = A−1f is the unique minimiser of

g 7→ α(g, g) − 2Re⟨f, g⟩.

Problem 36. Let V ∈ L∞(Rd,R) be non-negative.

1. Prove that for every f ∈ L2(Rd) and λ > 0 there exists a unique u ∈ H1(Rd) such
that

∀φ ∈ H1(Rd) : ⟨∇u,∇φ⟩ + ⟨(V + λ)u, φ⟩ = ⟨f, φ⟩,

that is, there is a unique weak solution to the equation

−∆u+ V u+ λu = f.

2. Prove that the weak solution u ∈ H1(Rd) obtained in part 1) is an element of
H2(Rd).
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C. Notation

Symbol Explanation Page

N Natural numbers (not including zero!)
N0 N ∪ {0}
D Differential of a vector-valued function
grad Gradient of a scalar function, grad f = Df

div Divergence of a vector field, div v = Tr(Dv)
B(x, r) Open ball of radius r around x

S (Rd) Space of Schwartz functions on Rd 5
S ′(Rd) Space of tempered distributions on Rd 17
Lp(Rd) Lebesgue space of p-integrable functions 41
Hk(Rd) Sobolev space of functions in L2(Rd) with k weak derivatives in L2 21
X Usually a complex Banach space
B(X,Y ) Banach space of bounded linear operators from X to Y
B(X) Banach space of bounded linear operators from X to X
X ′ Space of continuous linear functionals on X (=B(X,C)) 16
H Complex (separable) Hilbert space
A,D(A) Densely defined linear operator 35
G (A) Graph of A 36
A Closure of (A,D(A)) 36
∥·∥D(A) Graph norm on D(A) 39
A∗ (Hilbert) adjoint of (A,D(A)) 35
ker(A) Kernel of A
ran(A) Range of A
ρ(A) Resolvent set of A 36
Rz(A) Resolvent of A in z ∈ ρ(A), (A− z)−1 36
σ(A) Spectrum of A 36
Ck(U) Space of k-times continuously differentiable functions U → C
Ck0 (U) Space of k-times continuously differentiable functions U → C with

compact support, supp f ⋐ U
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