Partial Differential Equations

Jonas Lampart

Lecture Notes Spring 2025^1

¹These lecture notes are a draft and likely to contain mistakes. Please report any typos, errors, or suggestions to jonas.lampart@u-bourgogne.fr. Version of January 15, 2025

Contents

1.	Introduction	2	
	1.1. Examples	2	
2.	2. Linear PDEs with constant coefficients and the Fourier transform		
	2.1. Basic properties	4	
	2.2. The Schwartz space \mathscr{S}	5	
Α.	Appendix	10	
	A.1. The Lebesgue integral	10	
В.	Problems	14	
	B.0.1. (The heat equation) $\ldots \ldots \ldots$	15	
С.	Notation	17	

1. Introduction

A partial differential equation (PDE) is an equation whose 'unknown' is a function u, and in which (partial) derivatives of that function appear. This is similar to an ordinary differential equation (ODE) but the difference is that the unknown function

$$u: \mathbb{R}^d \to \mathbb{R} \text{ (or } \mathbb{C})$$

depends on more than one variable, $d \ge 2$, and derivatives in different directions play a role. Such equations, or systems of equations, arise in many contexts mathematics and applications in physics, engineering, and the sciences – such as electrodynamics, quantum mechanics, dynamics of weather and climate, and the description of materials.

1.1. Examples

1. The heat equation

$$\partial_t u(t,x) = \Delta_x u(t,x) \tag{1.1}$$

describes diffusion of heat in a (homogeneous, isotropic) medium.

2. Schrödinger's equation

$$i\partial_t \psi(t,x) = -\Delta_x \psi(t,x) + V(x)\psi(t,x)$$
(1.2)

describes the wave-function of a quantum particle in an external potential V.

3. The Poisson equation

$$\Delta u(x) = \rho(x) \tag{1.3}$$

gives the electric potential generated by the (static) charge distribution ρ . Maxwell's equations give a more complete description of electrodynamics.

4. The Euler equation

$$\begin{cases} \partial_t v(t,x) + v(t,x) \cdot D_x v(t,x) + \operatorname{grad}_x p(t,x) = 0\\ \operatorname{div}_x v(t,x) = 0 \end{cases}$$
(1.4)

describes the velocity field $v : \mathbb{R}^d \to \mathbb{R}^d$ and pressure $p : \mathbb{R}^d \to \mathbb{R}$ of an incompressible, inviscid fluid. Similar systems, like the Navier-Stokes equations, are used to model the dynamics of fluids and gases with different properties, e.g. water waves or atmospheric currents. 5. The Cauchy-Riemann equations

$$\begin{cases} \partial_x u(x,y) - \partial_y v(x,y) = 0\\ \partial_y u(x,y) + \partial_x v(x,y) = 0 \end{cases}$$
(1.5)

are satisfied by the real and imaginary part of every holomorphic function $f = u + iv : \mathbb{C} \cong \mathbb{R}^2 \to \mathbb{C}$.

Let $\alpha \in \mathbb{N}_0^d$ be a 'multi-index' and set

$$\partial^{\alpha} := \frac{\partial^{|\alpha|}}{\partial_{x_1}^{\alpha_1} \cdots \partial_{x_d}^{\alpha^d}},\tag{1.6}$$

where $|\alpha| = \sum_{j=1}^{d} \alpha_j$. That is, α_j is the number of partial derivatives in direction j and $|\alpha|$ is the total number of derivatives. Since for $u \in C^k(U, \mathbb{C}^n)$ the partial derivatives can be taken in any order, we can thus express the tensor $D^k u$ by

$$(D^k u)_{j_1,\dots,j_k} = \frac{\partial^k u}{\partial x_{j_k} \cdots \partial x_{j_1}} = \partial^\alpha u \tag{1.7}$$

where α_i is the number of partial derivatives taken in the *i*-th direction, and $|\alpha| = k$.

Note that we have the generalised Leibniz rule

$$\partial^{\alpha}(fg) = \sum_{\beta \le \alpha} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} (\partial^{\beta} f) (\partial^{\alpha - \beta} g), \qquad (1.8)$$

where $\beta \leq \alpha$ if $\beta \leq \alpha$ if $\beta_j \leq \alpha_j$ for all j = 1, ..., d, and the binomial coefficients are generalised as

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \prod_{j=1}^{d} \begin{pmatrix} \alpha_j \\ \beta_j \end{pmatrix}.$$
 (1.9)

Definition 1.1 (Linear PDE). A PDE is called (inhomogneous) linear PDE of order k if it has the form

$$\sum_{\alpha|\le k} a_{\alpha}(x)\partial^{\alpha}u = f(x), \tag{1.10}$$

where $a_{\alpha} : \mathbb{R}^d \to \mathbb{C}^{n \times n}$, for $|\alpha| \leq k$, and $f : \mathbb{R}^d \to \mathbb{C}^n$. The functions a_{α} are called the coefficients, and the PDE is called homogeneous if f = 0.

Question 1.2. Which of the examples in Sect. 1.1 are linear (in-) homogeneous PDEs?

2. Linear PDEs with constant coefficients and the Fourier transform

A particularly simple case of linear differential equations are those with constant coefficients, where the functions $a_{\alpha}(x) \equiv a_{\alpha}$ are independent of x. These can be transformed into simpler equations by the Fourier transform.

For $f \in L^1(\mathbb{R}^d)$, the Fourier transform is defined by

$$\hat{f}(p) = (\mathscr{F}f)(p) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} e^{-ip \cdot x} f(x) dx.$$
 (2.1)

Formally, we have with $p^{\alpha} = \prod_{j=1}^{d} p_{j}^{\alpha_{j}}$

$$p^{\alpha}\widehat{f}(p) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} p^{\alpha} e^{-ip \cdot x} f(x) dx$$

$$= \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} (-i)^{-|\alpha|} (\partial_x^{\alpha} e^{-ip \cdot x}) f(x) dx$$

$$\stackrel{!}{=} \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} (i)^{|\alpha|} (-1)^{|\alpha|} e^{-ip \cdot x} \partial_x^{\alpha} f(x) dx$$

$$= (-i)^{|\alpha|} \widehat{\partial_x^{\alpha}} f(p),$$

but the integration by parts (without boundary terms!) in the penultimate step certainly needs justification.

If we accept this identity, the linear PDE of Def. 1.1 becomes after transformation

$$\Big(\sum_{|\alpha| \le k} a_{\alpha} (\mathrm{i}p)^{\alpha} \Big) \hat{u}(p) = \hat{f}(p).$$
(2.2)

Any solution then satisfies, formally,

$$\hat{u}(p) \stackrel{!}{=} \Big(\sum_{|\alpha| \le k} a_{\alpha}(\mathbf{i}p)^{\alpha}\Big)^{-1} \hat{f}(p).$$

To recover the solution u, however, we will need to invert the Fourier transform.

2.1. Basic properties

A few important properties of the Fourier transform of $f \in L^1(\mathbb{R}^d)$ follow immediately from the definition.

Proposition 2.1. Let $f \in L^1(\mathbb{R}^d)$, denote by \hat{f} its Fourier transform (2.1) and denote by Rf(x) = f(-x) the reflection at x = 0 and $T_a f(x) = f(x-a)$ the translation. Then a) $\widehat{T_a f} = e^{-iap} \hat{f}$

- ∞) = uJ ° .
- b) $T_a \hat{f} = \widehat{\mathrm{e}^{\mathrm{i}ax} f}$
- c) $R\hat{f} = \widehat{Rf}$
- $d) \ \overline{\widehat{f}} = R\widehat{\overline{f}}$
- e) If f is real and even (Rf = f) then \hat{f} is also real and even.

Proof. Properties a)-d) follow from simple changes of variables (exercise). Property e) follows by combining c) and d).

The Dominated Convergence Theorem A.9 also yields that \hat{f} is continuous.

Lemma 2.2. Let $f \in L^1(\mathbb{R}^d)$ and \hat{f} its Fourier transform (2.1), then \hat{f} is continuous. Proof. Let $p_n \to p$ be a convergent sequence. Then since $|e^{-ip_n x} f(x)| \leq |f(x)| \in L^1(\mathbb{R}^d)$

$$\lim_{n \to \infty} \hat{f}(p_n) = \lim_{n \to \infty} \frac{1}{(2\pi)^{d/2}} \int e^{-ip_n x} f(x) dx = \frac{1}{(2\pi)^{d/2}} \int \lim_{n \to \infty} e^{-ip_n x} f(x) dx = \hat{f}(p)$$
(2.3)

by Dominated Convergence A.9, which proves the claim.

2.2. The Schwartz space \mathscr{S}

In order to make the formal calculations from the introduction rigorous and derive consequences for the solutions to the PDE, we start by introducing a class of functions on which the calculations can easily be justified. We will later expand beyond this class by approximation arguments.

A good framework to consider identities such as (2.2) is the space of Schwartz functions, where we can

- differentiate
- multiply by polynomials
- define the Fourier transform and its inverse.

Definition 2.3. The Schwartz space is

$$\mathscr{S}(\mathbb{R}^d) := \left\{ f \in C^{\infty}(\mathbb{R}^d) \Big| \forall \alpha, \beta \in \mathbb{N}_0^d : \sup_{x \in \mathbb{R}^d} |x^{\alpha} \partial_x^{\beta} f(x)| < \infty \right\}.$$
 (2.4)

A sequence $f_n, n \in \mathbb{N}$ in \mathscr{S} converges to $f \in \mathscr{S}$ iff

$$\forall \alpha, \beta \in \mathbb{N}_0^d : \lim_{n \to \infty} \|f_n - f\|_{\alpha, \beta} = 0,$$
(2.5)

2. Linear PDEs with constant coefficients and the Fourier transform

where

$$\|f\|_{\alpha,\beta} := \sup_{x \in \mathbb{R}^d} |x^{\alpha} \partial_x^{\beta} f(x)|.$$
(2.6)

A map $T : \mathscr{S}(\mathbb{R}^d) \to X$ into a metric space X is continuous iff T is sequentially continuous, that is, if for every sequence f_n converging to $f \in \mathscr{S}(\mathbb{R}^d)$

$$\lim_{n \to \infty} T f_n = T f \tag{2.7}$$

converges in X.

Question 2.4. Which of the following functions are elements of $\mathscr{S}(\mathbb{R})$?

1. $x \mapsto \cos(x)$, 2. $x \mapsto \cosh(x)^{-1} = 2(e^x + e^{-x})^{-1}$, 3. $x \mapsto e^{-|x|}$, 4. $x \mapsto e^{-x^2}$.

Remark 2.5. The space \mathscr{S} is a complete metric space with the distance

$$d(f,g) = \sum_{n \in \mathbb{N}_0} 2^{-n} \max_{|\alpha| + |\beta| = n} \frac{\|f - g\|_{\alpha,\beta}}{1 + \|f - g\|_{\alpha,\beta}}.$$
(2.8)

The notion of convergence defined above is the same as the convergence in the metric d.

Remark 2.6. Functions in \mathscr{S} are smooth by definition, and decrease faster than any inverse polynomial. Hence $\mathscr{S} \subset L^{\infty}$ with $||f||_{\infty} = ||f||_{0,0}$, and $\mathscr{S} \subset L^p$ for any $1 \leq p < \infty$, as by the multinomial formula

$$\begin{split} |f(x)| &\leq (1+x^{2d})^{-1} \sup_{y \in \mathbb{R}^d} |(1+y^{2d})f(y)| \\ &\leq (1+x^{2d})^{-1} \sup_{y \in \mathbb{R}^d} \left| \left(1 + \sum_{|\alpha|=d} \frac{d!}{\alpha!} y^{2\alpha} \right) f(y) \right| \\ &\leq (1+x^{2d})^{-1} (\|f\|_{0,0} + \sum_{|\alpha|=d} \frac{d!}{\alpha!} \|f\|_{2\alpha,0}), \end{split}$$

and

$$\int (1+x^{2d})^{-1} < \infty$$
 (2.9)

for $p \ge 1$.

For $f, g \in \mathscr{S}(\mathbb{R}^d)$ we define the convolution by

$$(f * g)(x) := \int f(x - y)g(y)dy.$$
 (2.10)

Lemma 2.7. Let $f, g \in \mathscr{S}(\mathbb{R}^d)$ with $\int g = 1$ and set $g_n(x) = n^d g(nx)$, then

$$\lim_{n \to \infty} (f * g_n)(x) = f(x).$$

Proof. By a change of variable

$$\int f(x-y)n^d g(ny) \mathrm{d}y = \int f(x-n^{-1}y)g(y) \mathrm{d}y.$$
(2.11)

Now the integrand converges pointwise to f(x)g(y) and is bounded by $||f||_{\infty}|g(y)| \in L^1$, so the integral converges to $f(x) \int g = f(x)$ by Dominated Convergence.

With this Lemma, we can prove the Fourier inversion theorem on \mathscr{S} .

Proposition 2.8. Define

$$(\mathscr{F}^{-1}f)(x) := \frac{1}{(2\pi)^{d/2}} \int \mathrm{e}^{\mathrm{i}px} f(p) \mathrm{d}p.$$

Then for all $f \in \mathscr{S}(\mathbb{R}^d)$,

$$f = \mathscr{F}^{-1}\mathscr{F}f = \mathscr{F}\mathscr{F}^{-1}f.$$

Proof. We admit that $\hat{f} \in \mathscr{S}$, which is proved in Proposition 2.9 below. Let $g(x) = e^{-x^2/2}$ and $g_n(x) = g(n^{-1}x)$. Then

$$(\mathscr{F}^{-1}\hat{f}(x) = \lim_{n \to \infty} \frac{1}{(2\pi)^{d/2}} \int e^{ipx} g_n(p) f(p) dp$$
(2.12)

by Dominated Convergence. On the other hand, by Fubini,

$$\frac{1}{(2\pi)^{d/2}} \int e^{ipx} g_n(p) \hat{f}(p) dp = \frac{1}{(2\pi)^d} \int e^{ipx} e^{-ipy} g_n(p) f(y) dy dp = \frac{(\hat{g}_n * f)(x)}{(2\pi)^{d/2}}.$$
 (2.13)

Now $\hat{g}_n(x) = n^d e^{-n^2 x^2/2}$ (see Problem 2), so by the preceding lemma

$$\lim_{n \to \infty} (\hat{g}_n * f)(x) = f(x) \int g = (2\pi)^{d/2} f(x),$$
(2.14)

and thus $(\mathscr{F}^{-1}\hat{f})(x) = f(x)$. The proof for $\mathscr{F}(\mathscr{F}^{-1}f)(x) = f(x)$ is the same.

Proposition 2.9. The Fourier transform \mathscr{F} is a linear and continuous map

$$\mathscr{F}:\mathscr{S}(\mathbb{R}^d)\to\mathscr{S}(\mathbb{R}^d),\qquad f\mapsto \hat{f}.$$

Its continuous inverse is given by \mathscr{F}^{-1} . Moreover, the identities

$$(\partial^{\alpha} \mathscr{F} f)(p) = (\mathscr{F}(-\mathrm{i}x)^{\alpha} f)(p) \tag{2.15}$$

$$p^{\alpha}(\mathscr{F}f)(p) = \mathscr{F}(\mathbf{i}^{|\alpha|}\partial^{\alpha})f)(p)$$
(2.16)

hold for all $f \in \mathscr{S}(\mathbb{R}^d), \alpha \in \mathbb{N}_0^d$.

2. Linear PDEs with constant coefficients and the Fourier transform

Proof. We prove that \hat{f} is smooth and the first identity by induction on $|\alpha|$. For $|\alpha| = 0$ we only need to prove that \hat{f} is continuous, which is Lemma 2.2.

Now assume the statement holds for all $\beta \in \mathbb{N}_0^d$ with $|\beta| \leq k$ and let $|\alpha| = k + 1$. Then there are $\beta \in \mathbb{N}_0^d$ and $j \in \{1, \ldots, d\}$ with $\alpha = \beta + e_j$. Denote $g = \partial^\beta \hat{f}$. By the theorem on parameter-dependent integrals A.10 and the induction hypothesis

$$g(p) = \frac{1}{(2\pi)^{d/2}} \int e^{-ipx} (-ix_j)^{\beta} f(x) dx$$
 (2.17)

is differentiable, with

$$\partial_{p_j} g(p) = \frac{1}{(2\pi)^{d/2}} \int \partial_{p_j} e^{-ipx} (-ix_j)^\beta f(x) dx = \frac{1}{(2\pi)^{d/2}} \int e^{-ipx} (-ix_j)^\alpha f(x) dx. \quad (2.18)$$

This completes the induction.

For the second identity, we use that

$$p_{j}\hat{f}(p) = \frac{1}{(2\pi)^{d/2}} \int p_{j} \mathrm{e}^{-\mathrm{i}px} f(x) \mathrm{d}x = \frac{1}{(2\pi)^{d/2}} \int \mathrm{i}\partial_{p_{j}} \mathrm{e}^{-\mathrm{i}px} f(x) \mathrm{d}x$$
$$= \frac{1}{(2\pi)^{d/2}} \int -\mathrm{i}\partial_{x_{j}} (\mathrm{e}^{-\mathrm{i}px} f(x)) + \mathrm{i}\mathrm{e}^{-\mathrm{i}px} \partial_{x_{j}} f(x) \mathrm{d}x.$$
(2.19)

The integral of the derivative vanishes, because for $h \in \mathscr{S}$ by Fubini's Theorem A.6 and the fundamental theorem of calculus

$$\int \partial_{x_j} h(x) \mathrm{d}x = \int_{|x_j| \le R} \partial_{x_j} h(x) \mathrm{d}x + \int_{|x_j| > R} \partial_{x_j} h(x) \mathrm{d}x$$
$$= \int_{\mathbb{R}^{d-1}} h(x) \Big|_{x_j = -R}^{x_j = R} + \int_{|x_j| > R} \partial_{x_j} h(x) \mathrm{d}x, \qquad (2.20)$$

and

$$\lim_{R \to \infty} \int_{\mathbb{R}^{d-1}} h(x) \Big|_{x_j = -R}^{x_j = R} = 0 = \int_{|x_j| > R} \partial_{x_j} h(x) \mathrm{d}x, \tag{2.21}$$

since h vanishes faster than any polynomial. This proves the second identity in the case $|\alpha| = 1$, from which the general case follows by induction, like the first.

We have shown that \hat{f} is smooth, so to show that $\hat{f} \in \mathscr{S}$ we need to show that $\|\hat{f}\|_{\alpha,\beta}$ is finite. Using the identities, we find using the Leibniz rule

$$\begin{aligned} |\hat{f}\|_{\alpha,\beta} &= \sup_{p \in \mathbb{R}^d} \left| (\mathscr{F}\partial^{\alpha} x^{\beta})(p) f \right| \\ &\leq \frac{1}{(2\pi)^{d/2}} \int (1+x^{2d})^{-1} \sup_{y \in \mathbb{R}^d} (1+y^{2d}) |\partial^{\alpha} y^{\beta} f(y)| \\ &\leq C \sum_{\substack{|\gamma| \leq \beta+2d \\ |\delta| < |\alpha|}} \|f\|_{\gamma,\delta} \end{aligned}$$
(2.22)

for some constant C, and hence $\hat{f} \in \mathscr{S}$. Moreover, \mathscr{F} is continuous in f = 0 by the bound (2.22), so it is continuous by linearity. Continuity of the inverse follows from $\mathscr{F}^{-1} = R\mathscr{F}$.

2.2. The Schwartz space \mathscr{S}

Corollary 2.10. Let $f, g \in \mathscr{S}(\mathbb{R}^d)$, then

$$\int f(x)\hat{g}(x) = \int \hat{f}(x)g(x),$$

and

$$\int |\widehat{f}|^2(p) \mathrm{d}p = \int |f|^2(x) \mathrm{d}x.$$

Proof. The first statement follows directly from Fubini's theorem. The second is a consequence of this and the Fourier inversion formula together with $\mathscr{F}^{-1}f(x) = \hat{f}(-x) = Rf$ and Proposition 2.1d), i.e.,

$$\int \hat{f}(p)\overline{\hat{f}}(p)\mathrm{d}p = \int f(x)\widehat{\overline{\hat{f}}}(x)\mathrm{d}x = \int f(x)\widehat{R\overline{\hat{f}}}(x)\mathrm{d}x = \int |f(x)|^2\mathrm{d}x.$$
 (2.23)

A. Appendix

A.1. The Lebesgue integral

This section summarizes those results from the theory of integration that are most important for the course, see [Ru] for an introduction and [LL] for more details.

Let $\mathscr{B}(\mathbb{R}^d)$ be the Borel σ -algebra on \mathbb{R}^d . That is, the smallest collection of subsets $B \subset \mathbb{R}^d$ that contains all open sets and is closed under complements, finite intersections and countable unions. Elements of \mathscr{B} are called measurable sets.

Definition A.1. A measure is a function

$$\mu:\mathscr{B}(\mathbb{R}^d)\to\mathbb{R}_+\cup\{\infty\}$$

with the properties

$$\mu(\emptyset) = 0$$
$$\mu\Big(\bigcup_{j=1}^{\infty} B_j\Big) = \sum_{j=1}^{\infty} \mu(B_j)$$

for any family of disjoint sets $(B_i)_{i \in \mathbb{N}}$.

The Lebesgue measure λ is the unique measure that is invariant by translation and satisfies $\lambda([0, 1]^d) = 1$.

Definition A.2. A function $f : \mathbb{R}^d \to \mathbb{C}$ is called measureable if for every $B \in \mathscr{B}(\mathbb{C}) \cong \mathscr{B}(\mathbb{R}^2)$

$$f^{-1}(B) = \{x \in \mathbb{R}^d : f(x) \in B\}$$

is measurable, i.e., an element of $\mathscr{B}(\mathbb{R}^d)$.

The characteristic function χ_B of any set $B \in \mathscr{B}(\mathbb{R}^d)$ is measurable. Its integral is defined as

$$\int \chi_B(x)\lambda(\mathrm{d}x) = \lambda(B). \tag{A.1}$$

A simple function is a linear combination of characteristic functions. Any measurable function is the pointwise limit of simple functions,

$$f(x) = \lim_{n \to \infty} \sum_{j=1}^{n} a_{j,n} \chi_{B_{j,n}}(x).$$
 (A.2)

Moreover, if f is *non-negative*, the simple functions can be chosen so that the value in each point is increasing in n. For a non-negative function one thus defines

$$\int f(x)\lambda(\mathrm{d}x) := \lim_{n \to \infty} \sum_{j=1}^{n} a_{j,n}\lambda(B_{j,n}) \in \mathbb{R}_{+} \cup \{\infty\}.$$
(A.3)

Since the right hand side is an increasing sequence of numbers that are positive or $+\infty$, this is well defined but possibly infinite.

Definition A.3. A positive measurable function $f : \mathbb{R}^d \to \mathbb{R}_+$ is called integrable if (A.3) is finite.

A measurable function $f : \mathbb{R}^d \to \mathbb{C}$ is called integrable if |f| is integrable.

If $f : \mathbb{R}^d \to \mathbb{C}$ is integrable, then

$$\int f(x) dx = \int f(x) \lambda(dx) = \lim_{n \to \infty} \sum_{j=1}^{n} a_{j,n} \lambda(B_{j,n})$$
(A.4)

is a well-defined complex number.

If $A \in \mathscr{B}(\mathbb{R}^d)$ is a measurable set we define

$$\int_{A} f(x) dx = \int \chi_A(x) f(x) dx, \qquad (A.5)$$

where χ_A is the characteristic function. We say that f is integrable on A if $f\chi_A$ is integrable.

If f is Riemann-integrable then f is Lebesgue-integrable and the integrals are equal [Ru, Thm.11.33].

Definition A.4 (Lebesgue spaces). Let $1 \le p < \infty$

$$\mathscr{L}^p(\mathbb{R}^d) := \{ f : \mathbb{R}^d \to \mathbb{C} : |f|^p \text{ is integrable} \}.$$

The Lebesgue space $L^p(\mathbb{R}^d)$ is the quotient of $\mathscr{L}^p(\mathbb{R}^d)$ under the equivalence relation

$$f \sim g :\Leftrightarrow \lambda \Big(\{ x : f(x) \neq g(x) \} \Big) = 0$$

of equality almost everywhere. It is a Banach space with the norm

$$||f||_p = \left(\int |f|^p(x) \mathrm{d}x\right)^{1/p},$$

where f is any representative in the equivalence class.

For $p = \infty$ we define $\mathscr{L}^p(\mathbb{R}^d)$ as the space of measureable functions for which

$$||f||_{\infty} = \operatorname{ess-sup}|f| := \inf\left\{t \in \mathbb{R} : \lambda(f^{-1}(t,\infty)) = 0\right\}$$
(A.6)

is finite. The Lebesgue space $L^p(\mathbb{R}^d)$ is the quotient of $\mathscr{L}^p(\mathbb{R}^d)$ by the same equivalence relation.

A. Appendix

Proposition A.5 (Hölder's inequality). Let $1 \le p, q \le \infty$ so that $p^{-1} + q^{-1} = 1$, with the convention that $\infty^{-1} = 0$. Then for $f \in L^p(\mathbb{R}^d)$, $g \in L^q(\mathbb{R}^d)$ we have $fg \in L^1(\mathbb{R}^d)$ and

$$\left| \int f(x)g(x)\mathrm{d}x \right| \le \|f\|_p \|g\|_q. \tag{A.7}$$

For d > 1 an important result concerns the relation of the *d*-dimensional integral and the iteration of lower-dimensional integrals.

Theorem A.6. Fubini-Tonelli Let $n, m \ge 1$, $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}_+$ be a measurable function and $A \in \mathscr{B}(\mathbb{R}^{n+m})$.

a) If $f \ge 0$, then

$$\int\limits_A f(x,y)\lambda(\mathbf{d}(x,y)) = \int\limits_{\pi_1(A)} \left(\int\limits_{\pi_1^{-1}(\{x\})\cap A} f(x,y)\mathbf{d}y\right)\mathbf{d}x = \int\limits_{\pi_2(A)} \left(\int\limits_{\pi_2^{-1}(\{y\})\cap A} f(x,y)\mathbf{d}x\right)\mathbf{d}y$$

where $\pi_j(A)$, j = 1, 2 are the projections of A to \mathbb{R}^n , \mathbb{R}^m respectively, and the equality is understood in the sense that if one expression is infinite, all are.

- b) If f is integrable on A, then
 - a) The functions

$$x \mapsto f(x, y), \qquad y \mapsto f(x, y)$$

are integrable on $\pi_2^{-1}(\{y\}) \cap A$ for almost every $y \in \mathbb{R}^m$, respectively on $\pi_1^{-1}(\{x\}) \cap A$ for almost every $x \in \mathbb{R}^n$;

b) the functions (set equal to zero where the integral is not defined)

$$\varphi(y) = \int_{\pi_2^{-1}(\{y\}) \cap A} f(x, y) \mathrm{d}x, \qquad \psi(x) = \int_{\pi_1^{-1}(\{x\}) \cap A} f(x, y) \mathrm{d}y$$

are integrable;

c) the identity

$$\int_{\pi_2(A)} \varphi(y) \mathrm{d}y = \int_A f(x, y) \mathrm{d}y = \int_{\pi_1(A)} \psi(x) \mathrm{d}x$$

holds.

The well-known transformation formular holds for the Lebesgue integral.

Theorem A.7 (Change of variables). Let $A \in \mathscr{B}(\mathbb{R}^d)$, let $\varphi : \mathbb{R}^d \to \mathbb{R}^d$ be a C^1 diffeomorphism, and denote by $|J(x) := |\det D\varphi(x)|$. Then if f is integrable on A, $x \mapsto f(\varphi(x))|J(x)|$ is integrable on $\varphi^{-1}(A)$ and

$$\int_{A} f(x) dx = \int_{\varphi^{-1}(A)} f(\varphi(x)) |J(x)| dx$$

The most important properties of the Lebesgue integral are the convergence theorems.

Theorem A.8 (Monotone Convergence). Let $(f_n)_n \in \mathbb{N}$ be a sequence of measurable functions with $f_n \leq f_{n+1}$ and

$$\lim_{n \to \infty} f_n(x) = f(x)$$

almost everywhere for some function $f : \mathbb{R}^d \to \mathbb{C}$. Then f is measureable and

$$\lim_{n \to \infty} \int f_n(x) \mathrm{d}x = \int f(x) \mathrm{d}x.$$

Theorem A.9 (Dominated Convergence). Let $(f_n)_{n \in \mathbb{N}}$ be a sequence of integrable functions and assume there is a measurable function f so that

$$\lim_{n \to \infty} f_n(x) = f(x)$$

almost everywhere. Assume moreover that there exists a positive, integrable function g so that

$$\forall n \in \mathbb{N} : |f_n| \le g$$

almost everywhere. Then f is integrable and

$$\lim_{n \to \infty} \int f_n(x) \mathrm{d}x = \int f(x) \mathrm{d}x.$$

An important corollary to this result concerns the exchange of integration and differentiation.

Corollary A.10. Let $U \subset \mathbb{R}^k$ be open and $f : U \times \mathbb{R}^d \to \mathbb{C}$ a measurable function such that

- 1. for all $\eta \in U$, $x \mapsto f(\eta, x)$ is integrable,
- 2. for almost all $x \in \mathbb{R}^d$, $\eta \mapsto f(\eta, x)$ is continuously differentiable,
- 3. there exists a positive, integrable function $g: \mathbb{R}^d \to \mathbb{R}_+$ with

$$\forall \eta \in U : \left| \nabla_{\eta} f(\eta, x) \right| \le g(x).$$

Then $\eta \mapsto \int f(\eta, x) dx$ is continuously differentiable and for all $j = 1, \ldots, k$

$$\partial_{\eta_j} \int f(\eta, x) \mathrm{d}x = \int \partial_{\eta_j} f(\eta, x) \mathrm{d}x.$$

B. Problems

Problem 1. Part 1

For any $n \in \mathbb{N}$, we set $f_n := \mathbf{1}_{[n,n+1]}$.

- 1. Show that for any $x \in \mathbb{R}_+$, $\lim_{n \to +\infty} f_n(x) = 0$
- 2. Show that for any $n \in \mathbb{N}$, we have $\int_{\mathbb{R}_+} f_n(x) dx = 1$

Part 2

We will show that the sequence $(f_n)_{n \in \mathbb{N}}$ does not satisfy the following property: there exist a non-negative function $g \in L^1(\mathbb{R}_+)$ such that

a.e.
$$x \in \mathbb{R}_+, \ \forall n \in \mathbb{N}, \quad |f_n(x)| \le g(x).$$
 (B.1)

1. Show that for any $x \in \mathbb{R}_+$

$$\sup_{n \in \mathbb{N}} \{ |f_n(x)| \} = 1.$$

2. Show that, if a measurable function $g : \mathbb{R}_+ \to \mathbb{R}$ satisfying (B.1), then $g \notin L^1(\mathbb{R}_+)$.

Problem 2. Let $a \in \mathbb{C}$ such that $\operatorname{Re}(a) > 0$. The goal of this exercise is to show that

$$\forall x \in \mathbb{R}^d, \quad \int_{\mathbb{R}^d} e^{-ix \cdot \xi} e^{-\frac{|x|^2}{2a}} dx = (2a\pi)^{\frac{d}{2}} e^{-a|\xi|^2}$$
(B.2)

Part 1

For any $x \in \mathbb{R}$, we define $h(x) := e^{-\frac{x^2}{2a}}$. We assume that $h \in \mathscr{S}(\mathbb{R}^d)$.

- 1. Show that $h'(x) = -\frac{x}{a}h(x)$.
- 2. Show that $h' \in L^1(\mathbb{R}^d)$ and that $\hat{h'}(\xi) = i\xi \hat{h}(\xi)$.
- 3. Show that $\hat{h}'(\xi) = -i\widehat{xh}(\xi)$.
- 4. Recall that

$$\int_{\mathbb{R}} h(x) dx = \sqrt{2a\pi}.$$

Show that $\hat{h}(0) = \sqrt{2a\pi}$.

5. Deduce that \hat{h} is the solution of the following Cauchy problem

$$\begin{cases} \hat{h}'(\xi) = -ia\xi\hat{h}(\xi) & \text{in } \mathbb{R}, \\ \hat{h}(0) = \sqrt{2a\pi}. \end{cases}$$
(B.3)

6. Deduce from the Cauchy-Lipschitz theorem that, for any $\xi \in \mathbb{R}$

$$\widehat{h}(\xi) = \sqrt{2\pi a} e^{-a|\xi|}.$$

Part 2 By remarking that for any $x = (x_1, \ldots, x_d) \in \mathbb{R}^d$ we have

$$e^{-\frac{|x|^2}{2a}} = \prod_{j=1}^d h(x_j),$$

show Formula (B.2).

Problem 3. B.0.1. (The heat equation)

Let $u_0 \in \mathscr{S}(\mathbb{R}^d)$. For any $t \ge 0$ and $\xi \in \mathbb{R}^d$, we set

$$u(t,x) := \frac{1}{(2\pi)^d} \int_{R^d} e^{ix \cdot \xi} e^{-t|\xi|^2} \widehat{u}_0(\xi) d\xi.$$

Part 1

- 1. Show that for any $(t,x) \in (0,+\infty) \times \mathbb{R}^d$, we have $\partial_t u(t,x) := \int_{\mathbb{R}^d} (-|\xi|^2) e^{ix \cdot \xi} e^{-t|\xi|^2} \hat{u}_0(\xi) d\xi$.
- 2. Show that $u \in \mathscr{C}^{\infty}((0, +\infty) \times \mathbb{R}^d)$.
- 3. Show that $\partial_t u \Delta u = 0$ in $(0, +\infty) \times \mathbb{R}^d$.

Part 2

1. Show that

$$\forall (t,x) \in (0,+\infty) \times \mathbb{R}^d, \ \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{ix \cdot \xi} e^{-t|\xi|^2} \widehat{u}_0(\xi) d\xi = \frac{1}{(4\pi t)^{\frac{d}{2}}} \int_{\mathbb{R}^d} e^{-\frac{|x-y|^2}{4t}} u_0(y) dy.$$

- 2. Show that $\lim_{t\to 0^+} u(t,x) = u_0(x)$.
- 3. Deduce that for any $x \in \mathbb{R}^d$, we have $u(0, x) = u_0(x)$.

Part 3

Show that, for any $f \in \mathscr{S}(\mathbb{R}^d)$, we have

$$f(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{ix \cdot \xi} \widehat{f}(\xi) d\xi.$$

Problem 4. For multiindeces $\alpha, \beta \in \mathbb{N}^d$, we declare that $\beta \leq \alpha$ if $\beta_j \leq \alpha_j$ for all $j = 1, \ldots, d$. Denote by

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \prod_{j=1}^d \begin{pmatrix} \alpha_j \\ \beta_j \end{pmatrix}.$$

Prove the generalised Leibniz formula for $f,g\in C^{|\alpha|}(\mathbb{R}^d)$

$$\partial^{\alpha}(fg) = \sum_{\beta \leq \alpha} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} (\partial^{\beta} f) (\partial^{\alpha-\beta} g).$$

B. Problems

Problem 5. Let $u_0 \in \mathscr{S}(\mathbb{R}^d)$. For any $(t, x) \in \mathbb{R} \times \mathbb{R}^d$ we set

$$u(t,x) := \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{ix \cdot \xi} e^{it|\xi|} \widehat{u}_0(\xi) d\xi.$$

a) Show that $u \in \mathscr{C}^{\infty}(\mathbb{R} \times \mathbb{R}^d)$.

b) Show that u solves the Schrödinger equation

$$\begin{cases} \partial_t u + i\Delta u = 0, & \text{in } \mathbb{R} \times \mathbb{R}^d, \\ \lim_{t \to 0} u(t, x) = u_0(x), & \text{in } \mathbb{R}^d. \end{cases}$$
(B.4)

Problem 6. Let u_0 and u_1 in $\mathscr{S}(\mathbb{R}^d)$. For any $(t, x) \in \mathbb{R} \times \mathbb{R}^d$ we set

$$u(t,x) := \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{ix\cdot\xi} \cos(t|\xi|) \widehat{u}_0(\xi) d\xi + \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{ix\cdot\xi} \frac{\sin(t|\xi|)}{|\xi|} \widehat{u}_1(\xi) d\xi.$$

- 1. Show that $u \in \mathscr{C}^{\infty}(\mathbb{R} \times \mathbb{R}^d)$.
- 2. Show that u solves the wave equation

$$\begin{cases} \partial_t^2 u - \Delta u = 0, & \text{in } \mathbb{R} \times \mathbb{R}^d, \\ \lim_{t \to 0} u(t, x) = u_0(x) \text{ and } \lim_{t \to 0} \partial_t u(t, x) = u_1(x), & \text{in } \mathbb{R}^d. \end{cases}$$
(B.5)

C. Notation

Symbol	Explanation	Page
		8 -
\mathbb{N}	Natural numbers (not including zero!)	
\mathbb{N}_0	$\mathbb{N} \cup \{0\}$	
D	Differential of a vector-valued function	
grad	Gradient of a scalar function, $\operatorname{grad} f = Df$	
div	Divergence of a vector field, $\operatorname{div} v = \operatorname{Tr}(Dv)$	
B(x,r)	Open ball of radius r around x	
$\mathscr{S}(\mathbb{R}^d)$	Space of Schwartz functions on \mathbb{R}^d	5
$\mathscr{S}'(\mathbb{R}^d)$	Space of tempered distributions on \mathbb{R}^d	??
$L^p(\mathbb{R}^d)$	Lebesgue space of p -integrable functions	11
$H^k(\mathbb{R}^d)$	Sobolev space of functions in $L^2(\mathbb{R}^d)$ with k weak derivatives in L^2	??
X	Usually a complex Banach space	
B(X,Y)	Banach space of bounded linear operators from X to Y	
$\mathrm{B}(X)$	Banach space of bounded linear operators from X to X	
X'	Space of continuous linear functionals on X (=B(X, \mathbb{C}))	??
${\cal H}$	Complex (separable) Hilbert space	
A, D(A)	Densely defined linear operator	??
$\mathscr{G}(A)$	Graph of A	??
\overline{A}	Closure of $(A, D(A))$??
$\left\ \cdot\right\ _{D(A)}$	Graph norm on $D(A)$??
A^*	(Hilbert) adjoint of $(A, D(A))$??,??
$\ker(A)$	Kernel of A	
$\operatorname{ran}(A)$	Range of A	
$\rho(A)$	Resolvent set of A	??
$R_z(A)$	Resolvent of A in $z \in \rho(A)$, $(A - z)^{-1}$??
$\sigma(A)$	Spectrum of A	??
$C^k(U)$	Space of k-times continuously differentiable functions $U \to \mathbb{C}$	
$C_0^k(U)$	Space of k-times continuously differentiable functions $U \to \mathbb{C}$ with compact support, supp $f \Subset U$	

Bibliography

- [FA] Guiseppe Dito, Functional analysis. Lecture notes, Université de Bourgogne, 2024.
- [Bre] Haim Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, 2011.
- [LL] Elliott H. Lieb, and Michael Loss, Analysis. American Mathematical Society, 2001.
- [RS1] Michael Reed and Barry Simon, Methods of modern mathematical physics: I Functional analysis (2nd ed.). Academic press, 1980.
- [RS2] Michael Reed and Barry Simon, Methods of modern mathematical physics: II Fourier analysis, self-adjointness. Academic Press, 1975.
- [Ru] Walter Rudin, Principles of Mathematical Analysis (3rd ed.). McGraw Hill, 1976.